Arskama.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Акселерометр для проверки работы двигателя

Аналоговые акселерометры ADXL337, ADXL377 и Arduino

ADXL337 и ADXL377 — это компактные, тонкие, маломощные 3-х осевые акселерометры, которые на выходе дают аналоговый сигнал в вольтах.

Основная разница между этими акселерометрами — диапазон измерений. ADXL337 измеряет ускорения в диапазоне ±3 g, а ADXL377 работает в диапазоне ±200 g и может использоваться для измерения более резких изменений движений контролируемого объекта, может использоваться для оценки вибраций.

Эта статья поможет вам разобраться с особенностями использования данных акселерометров. Будут раскрыты вопросы подключения акселерометров к Arduino. В результате вы легко и непринужденно сможете их интегрировать в любой ваш проект.

На фото ниже приведены платы с установленными акселерометрами:

Обзор и технические характеристики акселерометров ADXL337 и ADXL377

Акселерометры ADXL337 и ADXL377 можно (и рекомендуется!) покупать уже интегрированными в отдельный модуль. На модуле предусмотрена необходимая минимальная обвязка и готовые контакты для подключения к Arduino или другому микроконтроллеру.

Как видите, на обоих модулях одинаковое количество контактов. В таблице ниже приведена краткая информация о каждом из контактов на модулях:

Питание акселерометров ADXL337 и ADXL377

Здесь надо быть предельно осторожным. ADXL337 и ADXL377 оба должны запитываться максимальным напряжением 3.6 В! Это напряжение подается к контакту питания и к контакту Self Test. Можно использовать Arduino 5 В или 3.3 В для считывания значений с отдельных осей акселерометра, а запитывать сам датчик ускорения от 3.3 В. Но не забывайте, что значения, которые вы получите с сенсора после аналогово-цифрового преобразования будут разными при 5 В и при 3.3 В! Поэтому надо уточнять диапазоны в зависимости от сигнала преобразования.

Одним из достоинств акселерометров ADXL337 и ADXL377 является то, что они потребляют мало тока для работы. Обычно это около 300 мА.

Необходимые пояснения по использованию ADXL337 и ADXL377

Если вы запитываете ADXL337 или ADXL377 от 3.3 В, значение 1.65 В на контакте оси X будет соответствовать ускорению 0 g. Если на пине X у вас показания напряжения составляют 3.3 В, то на ADXL337 это значит, что сила составляет 3g. В то время как при показаниях 3.3 В на ADXL377 означают, что нагрузка составляет 200g. По сути оба чипа используются и подключаются одинаково, но показания будут разными, так как они зависят от максимально допустимых значений, которые считывает акселерометр.

На модуле ADXL377 предусмотрены 4 отверстия для крепежа, так как этот датчик ускорения рассчитан на более экстремальные условия нагрузок.

На обоих модулях установлены конденсаторы на 0.01 мкФ возле выходов на оси X, Y, и Z. То есть, максимальные частоты, в пределах которых вы можете оценивать ускорение составляет 500 Гц.

Пример подключения к Arduino

Распайка

Перед тем как устанавливать акселерометр на макетную плату и подключать к Arduino, вам надо припаять контакты. Это могут быть отдельные рельсы или просто провода. Что именно распаивать зависит исключительно от того, где в дальнейшем вы планируете использовать датчик ускорения.

Если вы планируете использовать макетную плату или монтажную плату с расстоянием между контактами 0.1″, рекомендуем припаять прямую рельсу контактов с выходом типа папа. Если в планах у вас подключать акселерометр сразу к контроллеру, без макеток и монтажных плат, используйте провода.

Подключаем акселерометр к Arduino

В этом примере мы рассмотрим как можно использовать контроллер Arduino Uno для сбора и обработки данных с модуля акселерометра ADXL337 или ADXL377. Так как выходной сигнал с датчика аналоговый, нам надо подключить три контакта с отдельных осей координат к контактам ‘Analog In’ на Arduino. На рисунке ниже показана схема подключения модуля ADXL337. ADXL377 подключается так же.

Запитать акселерометр можно с помощью контакт 3.3 В и GND на Arduino. Контакты осей X, Y, и Z с датчика подключаются к ADC пинам (A0, A1, и A2 в рассматриваемом примере). Пин self test (ST) можно не подключать, а можно подключить к земле (GND). Если вы хотите использовать ST контакт для двойной проверки функционирования сенсора, подключите его к 3.3 В. Для дополнительной информации по этому поводу можете ознакомится с даташитами сенсоров: ADXL377 и ADXL377.

Программа для Arduino

После того как вы подключили акселерометр к Arduino, можно перейти к программированию. Полный скетч вы можете скачать с Github. Ссылка для ADXL337 и для ADXL377. Единственное отличие в этих скетчах — значение переменной scale.

Первые две строки кода в скетче служат для настройки параметров под ваш модуль датчика ускорения:

int scale = 3; boolean micro_is_5V = true;

Значение переменной scale устанавливается равным максимальному значению измеряемой силы g. Для ADXL337 это значение устанавливается равным 3, а для модели ADXL377 переменная принимает значение 200, так как сенсоры обеспечивают диапазоны измерений ±3g и ±200g соответственно. Переменной micro_is_5V присваивается значение true, если используется контроллер с 5 В (например, Arduino Uno) и значение false,using если вы используете контроллер на 3.3 В (например, Arduino Pro Mini). Это важный параметр, который напрямую влияет на дальнейшую интерпретацию данных с сенсора.

После этого используем функцию setup() для инициализации серийного соединения. Благодаря этому мы сможем выводить показания в окно серийного монитора Arduino IDE.

В пределах функции loop(), мы собираем данные с датчика, масштабируем их для отображения в единицах измерения силы g и отображаем в окне серийного монитора изначальные и преобразованные данные. Для начала давайте взглянем на то, как считываются данные с датчика ускорения.

int rawX = analogRead(A0);

int rawY = analogRead(A1);

int rawZ = analogRead(A2);

Для того, чтобы получить числовое значение в диапазоне от 0 до 1023, которые соответствуют напряжению на входах Arduino, мы используем аналоговые входы A0, A1, и A2 и несколько считываемых значений. Эти значения напряжений отражают последнее измеренное значение ускорения с сенсора. Например, если ADXL337 показывает 3.3 В на контакте X, это означает, что сейчас ускорение вдоль оси X составляет +3g. Причем зависит это от вашей модели контроллера. Если вы используете микроконтроллер 3.3 В, считываемые аналоговые значения будут возвращать 1023 и храниться в переменной rawX. Если вы используете микроконтроллер 5 В, возвращаемые аналоговые значения будут равны 675. Храниться они будут в той же переменной. Именно поэтому важно корректно настроить переменную micro_is_5V, чтобы мы знали как правильно интерпретировать текущие показания.

Зная напряжение вашей платы Arduino, мы можем масштабировать полученные int значения и получить показания измерений в единицах измерения g. Ниже приведен кусок куда, с помощью которого мы приводим полученные показания к необходимым единицам измерения:

float scaledX, scaledY, scaledZ; // масштабированные значения для каждой оси

if (micro_is_5V) // микроконтроллер работает с 5 В

> else // микроконтроллер 3.3 В

Масштабированные значения хранятся в виде типа данных float. После этого мы проверяем, какой у нас контроллер (3.3 В или 5 В), с помощью булевой переменной micro_is_5V. По результатам проверки мы масштабируем целое значение x — rawX и превращаем его в значение со знаком после запятой, которое соответствует силе g. Переменная для хранения новых значений называется scaledX. То же самое мы делаем для осей Y и Z. Детально рассматривать эти оси мы не будем, так как процесс преобразования совершенно идентичный. Важно запомнить, что на Arduino 5 В мы получаем 675 при напряжении на пине 3.3 В, а Arduino 3.3 В интерпретирует измерения, которые соответствуют 3.3 В в виде значения 1023.

Читать еще:  Двигатель raket 120 характеристики

Функция mapf(), которая используется в скетче, работает так же как и стандартная Arduino функция map(). Основная причина, по которой используется именно mapf( ) — она может работать с десятичными значениями, а стандартная функция — только с целыми типа int.

После преобразования, мы выводим в окно серийного монитора текущие и преобразованные данные. Вероятно, вас будут интересовать только преобразованные, масштабированные значения ускорения, но потоковые данные оставлены специально, чтобы вы могли их сравнить с результатом и лучше понять принцип работы акселерометра. Часть кода, которая отвечает за вывод данных по каждой из осей чувствительности акселерометра ADXL337 или ADXL377 приведена ниже:

// выводим в окно серийного монитора текущие показания акселерометра по осям чувствительности X,Y,Z

Serial.println(rawX); // выводим преобразованные показания с акселерометра по осям X,Y,Z

Это позволяет нам увидеть данные в двух видах.

Перед снятием новых показаний, делаем задержку:

В примере выставлена задержка в 2 секунды (2000 миллисекунды), так как мы просто выводим показания сенсора в окно серийного монитора в целях ознакомления с акселерометром. В реальных проектах вы можете считывать данные с датчика с частотой 500 Гц. То есть, значение задержки можно сократить вплоть до 2 миллисекунд.

После этого возвращаемся в начало нашего цикла loop().

Надеемся, что эта статья поможет вам освоить работу акселерометров в связке с Arduino и вы используете полученные знания в ваших личных проектах. Кстати, с помощью акселерометра вы можете определять не только ускорение, но и перемещения, которое совершает объект. Подробная статья по определению угловых перемещений с помощью акселерометра и гироскопа: Arduino и MPU6050 для определения угла наклона.

Оставляйте Ваши комментарии, вопросы и делитесь личным опытом ниже. В дискуссии часто рождаются новые идеи и проекты!

Бить аккуратно, но сильно: что такое датчик детонации и как его проверить без сканера?

Есть в автомобиле такой датчик – датчик детонации. Многие знают, что он существует, некоторые даже скажут, что он каким-то чудесным образом как-то следит за детонацией (назначение датчика выдаёт его название). А что дальше? Как он это делает и что будет, если он вдруг перестанет работать? И как узнать, что он не работает? Всё намного проще, чем кажется.

Что такое детонация и зачем за ней следить ​

Все знают, что для работы двигателя внутреннего сгорания требуется то самое сгорание – воспламенение топливной смеси. Для этого в бензиновом моторе есть свеча зажигания, которая поджигает смесь в конце такта сжатия.

Обычная скорость распространения фронта пламени составляет 30-50 м/с. Но иногда возникает такая штука, которая правильно называется сгорание во фронте ударной волны. В этом случае скорость сгорания может возрастать до 2000 м/с. Складывается ситуация, когда нормального распространения фронта пламени уже нет – есть взрыв. А это и есть детонация.

С точки зрения физики выглядит довольно занудно, но если упростить, то можно сказать, что нарушается порядок сгорания топливно-воздушной смеси. При детонации фронт пламени даже не успевает дойти до краёв камеры сгорания, и смесь там самовоспламеняется под действием возрастающих температуры и давления.

При детонации возникает звук, услышав который, было принято говорить про «стучащие пальцы». Разумеется, поршневые пальцы во время детонации не стучат – не те там зазоры. Звенеть начинают сами стенки камеры сгорания.

Ещё иногда с детонацией путают совсем уж другое явление, при котором мотор не хочет останавливаться после выключения зажигания сразу, а иногда даже может прокрутить «в обратку» (конечно, речь идёт в первую очередь о старых карбюраторных моторах). Само собой, это не детонация, а калильное зажигание – явление, при котором топливно-воздушная смесь загорается сама по себе от слишком горячих деталей (например, от перегретых свечей зажигания с неправильно выбранным калильным числом). Впрочем, если детонация зашла слишком далеко и мотор от неё страдает со слишком завидной регулярностью, она вполне может вызвать калильное зажигание – детонация приводит к перегреву мотора.

Детонация – штука очень вредная. Она вызывает колоссальные ударные нагрузки на детали ЦПГ, она вполне может разрушить и поршневые кольца, и сами поршни. А если не обращать на неё никакого внимания, то и блок.

Подробно о причинах детонации рассказывать не буду – есть риск надолго уйти в сторону от датчика детонации и потонуть в болоте ньютонианства и менделеевщины. Если коротко, причин много: от плохого или «неправильного» бензина с низким октановым числом до кривой прошивки при чип-тюнинге. Впрочем, при очень кривом чип-тюнинге диагностику могут просто «порезать», и ошибки по датчику детонации не будет. Будет только звук. А ещё могут быть виноваты нагар на поршнях и в камере сгорания, бедная смесь, перегрев мотора или езда на слишком низких оборотах при высокой нагрузке.

Все современные моторы работают на грани детонации (как правило, при очень раннем угле опережения зажигания). В этом случае удаётся получить максимальный КПД. В эпоху трамблерных моторов с автоматами угла опережения зажигания добиться очень точного угла было сложно, поэтому тогда «пальцы стучали» часто.

Сейчас за угол опережения отвечает совсем небольшой датчик детонации, сигнал с которого позволяет позволяет изменять и этот угол, и при необходимости – состав топливной смеси.

Если датчик перестанет корректно работать, теоретически ничего страшного быть не должно: зажигание должно стать позже (в ЭБУ моторов такой отказ предусмотрен, и в случае, если ЭБУ потеряет сигнал, коррекция угла будет невозможной, но зажигание станет слишком поздним), детонации не будет, но ехать машина будет заметно хуже. Возможны и другие последствия: перегрев мотора, нагар на свечах, тот самый звук детонации, калильное зажигание, рост расхода бензина. Многое зависит от того, чем вызвана сама детонация. Если на моторе с прямым впрыском насмерть загажена камера сгорания, никакое смещение угла к позднему значению не спасёт. Ну и, конечно же, может загореться Check Engine. Что в этом случае делать?

Найти и обезвредить!

Разумеется, самый простой способ – это подключить сканер и считать ошибку. Но вряд ли у всех автолюбителей где-то в кладовке между дрелью и микроскопом лежит диагностический сканер (всякую ерунду из китайских магазинов я сканером не называю принципиально, хотя не отрицаю способность этой ерунды иногда что-нибудь показать). Поэтому попробуем обойтись без сложного оборудования.

Сначала надо этот датчик найти. Звучит смешно, но это так. Искать его нужно на блоке цилиндров. Проще всего дело обстоит с рядными «четвёрками»: датчик детонации обычно стоит ровно посередине блока между вторым и третьим цилиндрами. Там его и ищите, обычно – чуть ниже впускного коллектора. Такое расположение датчика на блоке позволяет ему «услышать» детонацию всех четырёх цилиндров, причём расположение мотора – продольное или поперечное – на положение датчика никак не влияет.

Читать еще:  Чему равен кпд двигателя станка

Сами датчики бывают двух типов: резонансные и широкополосные. Задача у них одна на всех: обнаружить стук в моторе (то есть ту самую детонацию), но алгоритмы работы немного разные. Резонансный датчик настроен на определённую частоту детонации, в которой он и проверяет шум. Частоту рассчитывают по формуле f(кГц)=900/(𝚷 * r), где r – радиус поршня, а 𝚷 – число Пи (3,1415. ). Если резонансный датчик слышит на этой стук с этой частотой, он впадает в панику и просит ЭБУ принять соответствующие меры. «Слышит» он их с помощью пьезоэлемента. Таким образом, датчик – это просто акселерометр, который способен преобразовать колебания блока в электрические сигналы.

Широкополосный датчик тоже слушает звук, но он не сконцентрирован на какой-то определённой частоте, а просто передаёт в ЭБУ все стуки. А тот уже сам думает, детонация это или нет и что теперь делать.

Отличить эти датчики просто: к резонансному подходит один провод, к широкополосному – два.

Если ЭБУ понимает, что началась детонация, оно начинает изменять угол опережения, делая зажигание более поздним. Поменяет и послушает датчик. Есть детонация? ОК, ещё немного подвину. Пропала? Отлично, вот так и поедем!

Допустим, датчик удалось найти и даже снять с машины. Что дальше? Есть несколько простых способов его проверки, но я традиционно расскажу только о самом элементарном. Для этого понадобится мультиметр, который умеет измерять очень маленькое напряжение – тысячные доли вольта, милливольты (проверьте свой – у моего, купленного когда-то за 120 рублей, порога не хватает). Выставляем мультиметр в режим измерения напряжения, к корпусу датчика прикладываем «минус», а плюсовой щуп аккуратно прижимаем к разъёму управляющего контакта. Теперь нужно зажать датчик в кулаке и немного постучать кулаком по столу. Так как пьезоэлемент ушей не имеет, слышит он именно удары, и исправный датчик реагирует на них изменением напряжения. Изменения очень маленькие – приблизительно в пределах 150 мВ, а если стучать слабенько, то и вовсе 30-40. В этом случае (если хотя бы этот минимум есть) нужно стукнуть кулаком с датчиком чуть сильнее. Если напряжение в момент удара хотя бы немного скакнуло повыше, датчик исправен. Если же никакой реакции на удары нет, датчик, скорее всего, умер. Стучать по нему молотком в попытке его реанимировать смысла нет – больше шансов добить очень чувствительный пьезоэлемент, чем восстановить работоспособность датчика.

Теоретически можно ещё проверить сопротивление датчика, но для этого нужно знать точное значение сопротивления датчика с вашей машины. Удары как-то проще и надёжнее.

Что делать дальше?

Есть, конечно умельцы, которые эти датчики восстанавливают или подбирают похожий датчик от другой машины, «подпиливая» его по месту дополнительными резисторами и конденсаторами. Наверное, иногда другого выхода нет (ну, может, они ездят на Bugatti Veyron, и найти этот датчик быстро и дёшево не получается), но всё-таки лучший способ – поставить новый и успокоиться, благо стоит обычно недорого. К сожалению, в жизни бывают ситуации сложнее: датчик рабочий, а какие-то ошибки он не показывает.

Тут всё просто: надо проверять проводку. В ней тоже бывают «глюки», а показания датчика детонации для нормальной работы ЭБУ должны быть точными.

Ну и последнее. Иногда датчик детонации может сходить с ума от посторонних шумов, которых мотор издавать не должен. Цоканье гидрокомпенсаторов, «дизеление», трески фазовращателей, стук цепного ГРМ – все эти посторонние звуки иногда случайным образом датчик может посчитать детонацией. В этом случае должны насторожить ненормальные углы опережения зажигания, хотя сам датчик окажется исправным.

Как я уже говорил, датчик детонации – не та деталь, выход из строя которой остановит машину. Нет, ехать она будет. Но расслабляться не стоит, потому что если детонация есть, она убивает мотор очень быстро. Особенно современный мотор – небольшого объёма и с наддувом. Так что если есть какие-то подозрения, лучше сразу поехать в сервис.

Акселерометр

Акселеро́метр (лат. accelero — ускоряю и др.-греч. μετρέω «измеряю») — прибор, измеряющий проекцию кажущегося ускорения (разности между истинным ускорением объекта и гравитационным ускорением). Как правило, акселерометр представляет собой чувствительную массу, закреплённую в упругом подвесе. Отклонение массы от её первоначального положения при наличии кажущегося ускорения несёт информацию о величине этого ускорения.

По конструктивному исполнению акселерометры подразделяются на однокомпонентные, двухкомпонентные, трёхкомпонентные. Соответственно, они позволяют измерять проекции кажущегося ускорения на одну, две и три оси.

Некоторые акселерометры также имеют встроенные системы сбора и обработки данных. Это позволяет создавать завершённые системы для измерения ускорения и вибрации со всеми необходимыми элементами.

Содержание

  • 1 Применение
  • 2 Акселерометр в условиях невесомости
  • 3 Параметры
  • 4 Погрешности
  • 5 Примечания
  • 6 Ссылки

Применение [ править | править код ]

Акселерометр может применяться как для измерения проекций абсолютного линейного ускорения (если известны величина и направление гравитационного ускорения в данной точке пространства), так и для косвенных [1] измерений проекции гравитационного ускорения (при неподвижности акселерометра в гравитационном поле). Первое свойство используется для создания инерциальных навигационных систем, где полученные с помощью акселерометров измерения интегрируют, получая инерциальную скорость и координаты носителя. Таким образом, акселерометры, наравне с гироскопами, являются неотъемлемыми компонентами систем навигации и управления самолётов, ракет и других летательных аппаратов, кораблей и подводных лодок. Второе свойство позволяет использовать акселерометры как для измерения уклонов, то есть в качестве инклинометров, так и в гравиметрии.

Акселерометр в промышленной вибродиагностике является вибропреобразователем, измеряющим виброускорение в системах неразрушающего контроля и защиты.

Акселерометры используют в системах управления жестких дисков компьютеров для активации механизма защиты от повреждений (которые могут быть получены в результате ударов и падений): реагируя на внезапное изменение ускорения, система отдаёт команду на парковку головок жесткого диска, что позволяет предотвратить повреждение диска и потерю данных. Такая технология защиты используется в основном в ноутбуках, нетбуках и на внешних накопителях.

Акселерометры, встроенные в автомобильные видеорегистраторы, различают тревожные события, такие как резкое торможение, ускорение, столкновение, резкие повороты и вращение. Эти события записываются видеорегистраторами в отдельный файл, помечаются специальным маркером и защищаются от случайного стирания и перезаписи.

В устройствах управления игровых приставок акселерометр, совместно с гироскопом [ уточнить ] , используются для управления в играх без использования кнопок — путём поворотов в пространстве, встряхиваний и т. д. Например, акселерометр присутствует в игровых контроллерах Wii Remote и PlayStation Move.

Кроме того, цифровые акселерометры нашли широкое применение в мобильных устройствах, например, телефонах, планшетных компьютерах и т. п. Благодаря акселерометрам осуществляется управление положением изображения на мониторе мобильного устройства и отслеживание его ориентации относительно направления гравитационного ускорения Земли [2] .

Акселерометр в условиях невесомости [ править | править код ]

В условиях невесомости истинное ускорение объекта вызывается лишь гравитационной силой и потому в точности равно гравитационному ускорению. Таким образом, кажущееся ускорение отсутствует и показания любого акселерометра равны нулю. Все системы, использующие акселерометр как датчик наклона, прекращают функционировать. Например, планшетный компьютер не изменяет положение изображения при перевороте корпуса [3] .

Читать еще:  Асинхронный двигатель что такое cos

Параметры [ править | править код ]

Основными параметрами акселерометра являются:

  • Масштабный коэффициент — коэффициент пропорциональности для линейной зависимости между измеряемым кажущимся ускорением и выходным сигналом (электрическим сигналом, частотой колебаний (для струнного акселерометра) или цифровым кодом).
  • Рабочий диапазон частот.
  • Пороговая чувствительность (разрешение) — величина минимального изменения кажущегося ускорения, которое способен определить прибор.
  • Смещение нуля — разность между показаниями прибора и проекцией гравитационного ускорения на ось чувствительности при нулевом кажущемся ускорении.
  • Случайное блуждание — среднеквадратичное отклонение от смещения нуля.
  • Нелинейность — отклонение зависимости между выходным сигналом и кажущимся ускорением от линейной при изменении кажущегося ускорения.

Погрешности [ править | править код ]

На величину выходного сигнала акселерометра в основном влияют:

  • температура окружающей среды и места крепления акселерометра (температурные погрешности);
  • внешние магнитные поля (погрешности от магнитного поля);
  • вибрация и угловые колебания основания (вибрационные погрешности);
  • частотные характеристики акселерометра (частотные погрешности);
  • гистерезис показаний (одна из составляющих нелинейности).

Использование акселерометра при диагностике вибрации силового агрегата

Повышенная вибрация силового агрегата, которую ощущают водитель и пассажиры в салоне автомобиля, обычно вызывается одним из трех факторов или их сочетанием:

  • повышенная неравномерность вращения коленчатого вала;
  • дисбаланс вращающихся масс;
  • нарушение демпфирующих свойств опор силового агрегата.

Штатный диагностический сканер может отобразить только нарушение равномерности вращения коленчатого вала. ДПКВ «видит» перемещение коленчатого вала относительно силового агрегата, ускорения и торможения коленчатого вала сопровождаются угловыми ускорениями силового агрегата. При ускорении коленчатого вала силовой агрегат получает угловое ускорение в противоположную сторону относительно вращения вала – вал «отталкивается» от него, при замедлении коленчатый вал как бы «тащит» агрегат за собой. При повышенной неравномерности вращения – из-за различной эффективности работы цилиндров – нормальное чередование ускорения и замедления коленчатого нарушается.

На слайде представлено резкое увеличение угла закручивания силового агрегата относительно оси Х (совпадающей с осью вращения коленчатого вала) при выключении подачи топлива в третий цилиндр двигателя. Сопоставляя графики, можно пошагово проследить механизм развития колебаний с повышенной амплитудой. Для зарезонансных колебаний характерным является факт противоположного направления сил от реакции опор и сил, возбуждающих колебания. Событие 1 – пропуск воспламенения в 3-м цилиндре – привело к тому, что вместо ускорения, коленчатый вал стал замедляться. Это, в свою очередь, привело к тому, что силовой агрегат вместо углового ускорения в положительную сторону получил его в отрицательную, то есть угловая скорость, итак имеющая некоторые отрицательные значения, стала сильно отрицательной, и силовой агрегат повернулся на отрицательный угол, деформировав при этом опоры. Далее произошло событие 2 – рабочий ход в 4-м цилиндре. При этом произошло суммирование момента, вызванного деформацией опор и момента от ускорения коленчатого вала. Положительное ускорение силового агрегата при этом получилось значительно более интенсивным, что привело к перемене знака угловой скорости силового агрегата. Нормальное протекание рабочего процесса во втором и первом цилиндрах позволяет сохранить положительное значение угловой скорости силового агрегата и приводит к тому, что силовой агрегат закручивается на значительный угол уже в положительную сторону. Затем наступает событие 3 – замедление коленчатого вала перед ВМТ 3-го цилиндра и событие 4 – отсутствие воспламенения в процессе рабочего хода в 3-м цилиндре. При этом реакция на замедление коленчатого вала совпадает с реакцией от деформации опор, что приводит к ещё большему, чем в предыдущем цикле, закручиванию силового агрегата в отрицательную сторону. Событие 5 – рабочий ход в 4-м цилиндре приводит к еще более резкому, чем в первом случае, изменению скорости и закручиванию, в итоге, на еще больший положительный угол. Далее раскачивание силового агрегата повторяется.

Можно отметить, что появление зон локального резонанса – временного совпадения реакции от деформированных опор и возбуждающего колебания силового фактора – приводит к значительному увеличению амплитуды колебаний.

Если повышенная амплитуда колебаний силового агрегата вызвана дисбалансом вращающихся масс, то «увидеть» это на основании сигналов ДПКВ невозможно. Для этого нужен акселерометр.

На следующем рисунке фрагмент работы двигателя М60 на повышенных (1200 – 1300 мин-1) оборотах холостого хода. Субъективно, в салоне автомобиля, ощущается сильная вибрация. Она ощущается с минимальной частоты холостого хода, достигает максимума, которой приходится на частоту 1200 – 1300 мин-1, и постепенно уменьшается к 3000 мин-1. По графику частоты вращения можно отследить низкую эффективность работы 8-го цилиндра, по-видимому, из-за большого объема картерных газов, попадающих в этот цилиндр. Анализируя отфильтрованный сигнал акселерометра видно, что его низкочастотная составляющая равна частоте вращения двигателя. Следовательно, ее нельзя объяснить только низкой эффективностью работы 8-го цилиндра, частота работы которого в два раза ниже. Если сопоставить график частоты вращения и отфильтрованный сигнал акселерометра, можно прийти к выводу, что имеется фактор, несвязанный с неравномерностью вращения коленчатого вала, вынуждающий силовой агрегат колебаться на опорах. Таким фактором может быть, например, отсутствующая лопасть крыльчатки охлаждения радиатора. Но в данном случае все лопасти целы, а четкая фазировка колебаний относительно положения коленчатого вала приводит к выводу, что колебания вызваны дисбалансом вращающихся масс коленчатого вала. Наиболее вероятным источником дисбаланса у данного двигателя является двухмассовый маховик. Передняя часть такого маховика жестко крепится к коленчатому валу, а задняя часть крепится к передней через демпфирующий элемент. В результате эксплуатации демпфирующий элемент изнашивается, и задняя часть маховика получает радиальное смещение относительно передней. И даже незначительное смещение этой части приводит к ощутимой вибрации из-за ее большой массы.

к.т.н. А.В. Александров, к.т.н. И.А. Долгов

Научные изыскания

В статье «Мобильный комплекс для регистрации и обработки параметров работы автомобильного двигателя», опубликованной в No 2 за 2017 год [1], сообщалось о разработке в лаборатории двигателей МАДИ датчиков для индицирования ДВС и о порядке обработки индикаторных диаграмм.

И.А. Долгов, к.т.н. / А.В. Александров, к.т.н., ст. преп. Московский автомобильно-дорожный государственный технический университет (МАДИ)

В статье рассматриваются проблемы индицирования автомобильного двигателя в движении и программно-аппаратный мобильный диагностический комплекс, позволяющий это осуществлять. Анализируются задачи, для решения которых актуально индицирование автомобиля в движении.

В предыдущей статье – «Актуальность индицирования ДВС» №5/2016 – сообщалось, что наше подразделение ведет работы по созданию комплекса для регистрации и обработки параметров работы ДВС. Так как процесс сгорания представляет особенный интерес, в состав комплекса должны входить датчики для индицирования, их разработкой мы сейчас также занимаемся. При подготовке к изданию первой статьи, высказывались пожелания поподробнее рассказать об оборудовании, которое использовалось для получения материала и его работе.

Индицирование – измерение давления газов в цилиндрах двигателя в процессе его работы – основной метод контроля протекания сгорания в двигателе. С развитием технических средств развивались и методы индицирования.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector