Аналоговые датчики температуры двигателя
Датчики температуры. Типы, устройство, принцип работы. Схемы подключения
Контроль температуры повсеместно задействуется в технологических процессах, позволяя выбирать подходящий режим работы или отслеживать изменения состояния материала. Температурный режим одинаково важен как при включении духовки на кухне, так и в доменных печах при плавлении стали, а отклонение от нормальной работы может привести к аварии и травмированию людей. Чтобы избежать неприятных последствий и обеспечить возможность регулирования степени нагрева используется датчик температуры.
Разновидности, устройство и принцип работы
В ходе развития и совершенствования технологий датчик температуры, как измерительное приспособление, претерпел множественные изменения и модернизации. Благодаря чему сегодня они представлены в большом разнообразии, которые можно разделить по нескольким критериям. Так, в зависимости от способа передачи и отображения данных об измерениях температуры они подразделяются на цифровые и аналоговые. Цифровые устройства являются более современным решением, так как информация в них отображается на дисплее и передается по электронным каналам коммуникации, аналоговые имеют циферблатное отображение данных, электрический или механический способ передачи измерений.
В зависимости от принципа действия все датчики можно подразделить на:
- термоэлектрические;
- полупроводниковые;
- пирометрические;
- терморезистивные;
- акустические;
- пьезоэлектрические.
Термоэлектрические
В основе работы термоэлектрического датчика лежит принцип термопары (см. рисунок 1) – у всех металлов существует определенная валентность (количество свободных электронов на внешних атомарных орбитах, не задействованных в жестких связях). При воздействии внешних факторов, сообщающих свободным электронам дополнительную энергию, они могут покинуть атом, создавая движение заряженных частиц. В случае совмещения двух металлов с различным потенциалом выхода электронов и последующим нагреванием места соединения возникнет разность потенциалов, получившая название эффекта Зеебека.
Рис. 1. Устройство термопары
На практике применяется несколько разновидностей термоэлектрических датчиков температуры, так, согласно п.1.1 ГОСТ Р 50342-92 они подразделяются на:
- вольфрамрений-вольфрамрениевые (ТВР) – применяется в средах с большой рабочей температурой порядка 2000°С;
- платинородий-платинородиевые (ТПР) – отличаются высокой себестоимостью и высокой точностью измерений, применяются я в лабораторных измерениях;
- платинородий-платиновые (ТПП) – оснащаются защитной трубкой из металла и керамической изоляцией, обладают высоким температурным пределом;
- хромель-алюмелевые (ТХА) — широко применяются в промышленности, способны охватывать диапазон температуры до 1200°С, используются в кислых средах;
- хромель-копелевые (ТХК) – характеризуются средним температурным показателем, монтируются только в неагрессивных средах;
- хромель-константановые (ТХК) — актуальны для газовых смесей и разжиженных аэрозолей нейтрального или слабокислого состава;
- никросил-нисиловые (ТНН) – применяются для устройств среднего температурного диапазона, но обладают длительным сроком эксплуатации;
- медь-константановые (ТМК) – характеризуется наименьшим пределом измерений до 400°С, но отличается устойчивостью к влаге и некоторым категориям агрессивных сред;
- железо-константановые (ТЖК) – применяются в среде с разжиженной атмосферой или вакуумного пространства.
Такое разнообразие температурных датчиков на основе термопары позволяет охватывать любые сферы человеческой деятельности.
Полупроводниковые
Изготавливаются на основе кристаллов с заданной вольтамперной характеристикой. Такие датчики температуры работают в режиме полупроводникового ключа, аналогично классическому биполярному транзистору, где степень нагревания сравнима с подачей потенциала на базу. При повышении температуры полупроводниковый датчик начнет выдавать большее значение тока. Как правило, самостоятельно полупроводник не используется для измерения нагрева, а подключается через цепь усилителя (см. рисунок 2).
Рис. 2. Подключение полупроводникового датчика через усилитель
Отличаются широким диапазоном производимых измерений и возможностью подстройки датчика в соответствии с рабочими параметрами оборудования. Являются высокоточным типом, мало зависящим от продолжительности эксплуатации. Обладают небольшими габаритами, за счет чего легко устанавливаются в схемах, радиоэлементах и т.д.
Пирометрические
Работают за счет специальных датчиков – пирометров, которые позволяют улавливать малейшие температурные колебания рабочей поверхности любого предмета. Непосредственно сам чувствительный элемент представляет собой матрицу, реагирующую на определенную частоту температурного диапазона. Этот принцип положен в основу измерений бесконтактным термометром, который получил широкое распространение в период борьбы с коронавирусом. Помимо этого их применение активно используется для тепловизионного контроля конструктивных элементов, оборудования, зданий и сооружений.
Рис. 3. Принцип действия пирометрического датчика
Терморезистивные
Такие датчики температуры выполняются на основе терморезисторов – устройств с определенной зависимостью сопротивления от степени нагрева основного материала. С повышением температуры, изменяется и проводимость резистора, благодаря чему вы можете следить за состоянием нужного объекта.
Основным недостатком терморезистивного датчика является малый диапазон измеряемой температуры, но он способен обеспечивать хороший шаг измерений и высокую точность в десятых и сотых долях градусов Цельсия. Из-за чего их нередко включают в цепь с применением усилителя, расширяющего рабочие пределы.
Акустические
Акустические датчики температуры функционируют по принципу определения скорости прохождения звуковых колебаний в зависимости от температуры материала или поверхности . Непосредственно сам сенсор производит сравнение скорости звука, генерируемого источником, которая будет отличаться, в зависимости от степени нагрева (см. рисунок 4). Такой тип является бесконтактным и позволяет производить замеры в труднодоступных местах или на объектах повышенной опасности.
Рис. 4. Звуковой датчик температуры
Пьезоэлектрические
Работа датчика основана на эффекте распространения колебаний кварцевого кристалла при прохождении электрического тока. Но, в зависимости от температуры окружающей среды, будет меняться и частота колебаний кристалла. Принцип фиксации температурных изменений заключается в измерении частоты колебаний и последующем сравнении с установленной градуировкой номиналов для разных температур.
Схемы подключения
Основные отличия в подключении датчика температур обуславливаются сферой его применения и конструктивными особенностями. Так, в рамках статьи, мы рассмотрим несколько наиболее распространенных и интересных вариантов. Таковыми является подключение с помощью двухпроводной и трехпроводной схемы.
Рис. 5. Двухпроводная схема подключения
На рисунке 5 приведен вариант двухпроводного присоединения измерительного устройства. Этот принцип рекомендуется для всех датчиков температуры с небольшим расстоянием до контролируемого объекта. Так как сопротивление самого чувствительного элемента Rt мало измениться от сопротивления соединительных проводников R1 и R2, соответственно, поправка на измерения будет минимальной.
Рис. 6. Трехпроводная схема подключения
При больших расстояниях, от 150 м и более, подключение датчика следует выполнять по трехпроводной схеме, в которой существенно снижается погрешность на сопротивление в проводах R1, R2, R3.
Рис. 7. Схема подключения датчика температуры двигателя
Практически в каждом современном авто осуществляется постоянный контроль температурных параметров мотора. Поэтому использование датчика является обязательным требованием безопасности. Согласно двухпроводной схемы (рисунок 7) датчик подключается одним выводом на отдельно стоящий концевик капота, который не имеет каких-либо подключений к цепи. А второй вывод, подсоединяется к блоку сигнализации установленным порядком, в соответствии с моделью.
Рис. 8. Схема подключения цифрового датчика температуры
На рисунке 8 приведен пример включения цифрового датчика Dallas. Это модель с тремя выводами, первый из которых, согласно распиновки GND подключается к заземляющему выводу микроконтроллера, второй DATA к выводу PIN 2, а третий к клемме питания +5 В. Между третей и второй ножкой включается резистор на 4,7кОм.
Примение
Сфера применения датчиков температуры охватывает как бытовые приборы, так и оборудование общепромышленного назначения, сельскохозяйственную отрасль, военную промышленность, аэрокосмический сектор. Каждый из вас может встретить их у себя дома в нагревательных приборах – бойлерах, духовках, мультиварках или хлебопечках.
В тяжелой промышленности тепловые сенсоры позволяют контролировать степень нагрева печей, воздуха в рабочей области, состояние трущихся поверхностей. В медицине их используют для контроля температуры в труднодоступных местах или для упрощения различных процедур.
Многие автолюбители часто сталкиваются с анализаторами температуры, контролирующими состояние масла или другой охлаждающей жидкости. На сети железных дорог они позволяют отслеживать нагрев букс и колесных пар. В энергетике с их помощью обследуются контактные соединения и качество прилегания поверхностей.
Как подобрать?
При выборе датчика температуры необходимо руководствоваться такими критериями:
- если датчик будет соприкасаться или располагаться внутри измеряемой среды, то берется контактная модель, если находиться вне объекта, то бесконтактная;
- условия и состояние среды, в которой он будет функционировать (влажность, агрессивные вещества и т.д.) должны соответствовать возможностям датчика;
- шаг и градуировка измерений должны обеспечивать удобную эксплуатацию и датчика, и оборудования;
- если датчик подлежит замене в ходе эксплуатации, то устанавливаются сменные варианты;
- при выборе датчика температуры для замены неисправного, лучше воспользоваться его VIN кодом;
- предел рабочих температур должен охватывать все возможные значения нагрева, некоторые из них приведены в таблице ниже.
Таблица: температурные пределы датчиков термоэлектрического типа
Датчики температуры Arduino
В этой статье мы рассмотрим популярные датчики температуры для Arduino ds18b20, dht11, dht22, lm35, tmp36. Как правило, именно эти датчики становятся основой для инженерных проектов начального уровня для Arduino. Мы рассмотрим также основные способы измерения температуры, классификацию датчиков температуры и приведем сравнение различных датчиков в одной таблице.
Описание датчиков температуры
Температурные датчики предназначены для измерения температуры объекта или вещества с помощью свойств и характеристик измеряемой среды. Все датчики работают по-разному. По принципу измерения эти устройства можно разделить на несколько групп:
- Термопары;
- Термисторы;
- Пьезоэлектрические датчики;
- Полупроводниковые датчики;
- Цифровые датчики;
- Аналоговые датчики.
По области применения можно выделить датчики температуры воздуха, жидкости и другие. Они могут быть как наружные, так и внутренние.
Любой температурный датчик можно описать набором характеристик и параметров, которые позволяют сравнивать их между собой и выбирать подходящий под конкретную задачу вариант. Основными характеристиками являются:
- Функция преобразования, т.е. зависимость выходной величины от измеряемого значения. Для датчиков температуры этот параметр измеряется в Ом/С или мВ/К.
- Диапазон измеряемых температур.
- Метрологические параметры – к ним относятся различные виды погрешностей.
- Срок службы.
- Время отклика.
- Надежность – рассматриваются механическая устойчивость и метрологическая стойкость.
- Эксплуатационные параметры – габариты, масса, потребляемая мощность, стойкость к агрессивному воздействию среды, стойкость к перегрузкам и другие.
- Линейность выходных значений.
Датчики температуры по типу
- Термопары. Принцип действия термопар основывается на термоэлектрическом эффекте. Представляет собой замкнутый контур из двух проводников или полупроводников. В контуре возникает электрический ток, когда на месте спаев появляется разность температур. Чтобы измерить температуру, один конец термопары помещается в среду для измерения, а второй требуется для снятия значений. На спаях возникают термоЭДС E(t2) и E(t1), которые и определяются температурами t2 и t Результирующая термоЭДС в контуре будет равна разности термоЭДС на концах спаев E(t2)- E(t1). Термопары чаще всего выполняются из платины, хромеля, алюмеля и платинородия. Наибольшее распространение в России получили пары металлов ХА(хромель-алюмель), ТКХ(хромель – копель) и ТПП (платинородий-платина). Большим недостатком таких приборов является большая погрешность измерений. Из преимуществ можно выделить возможность измерения высоких температур – до 1300С.
- Терморезистивные датчики. Изготавливаются из материалов, обладающих высоким коэффициентом температурного сопротивления (ТКС). Принцип работы заключается в изменении сопротивления проводника в зависимости от его температуры. Такие приборы обладают высокой точностью, чувствительностью и линейностью измеренных значений. Основными характеристиками устройства являются номинальное электрическое сопротивление при температуре 25 С и ТКС. Терморезистивные датчики различаются по температурному коэффициенту сопротивления – бывают термисторы с отрицательным (NTC) и положительным (PTC, позисторы) ТКС. Для первых с ростом температуры уменьшается сопротивление, для позисторов – увеличивается. Терморезистивные датчики чаще всего применяются в электронике и машиностроении.
- Пьезоэлектрический датчик. Такое устройство работает на пьезоэффекте. Под воздействием электрического тока происходит изменение линейных размеров -прямой пьезоэффект. Когда подается разнофазный ток с определенной частотой, происходит колебание пьезорезонатора. Частота определяется температурой. Зная полученную зависимость, можно определить необходимые данные о частоте и температуре. Диапазон измерения температуры широк, устройство обладает высокой точностью. Датчики чаще всего используются в научных опытах, которые требуют высокой надежности результатов.
- Полупроводниковый датчик. Измеряют в диапазоне от -55С до 150С. Принцип работы основан на зависимости изменения напряжения на p-n-переходе от температуры. Так как эта зависимость практически линейна, есть возможность создать датчик без сложной схемы. Но для таких приборов схема содержит одиночный p-n-переход, поэтому датчик отличается большим разбросом параметров и невысокой точностью. Исправить эти недостатки получилось в аналоговых полупроводниковых датчиках.
- Аналоговый датчик. Приборы стоят дешево и обладают высокой точностью измерения, что позволяет их применять в микроэлектронике. В схеме содержатся 2 чувствительных элемента (транзистора), обладающих различными характеристиками. Выходной сигнал – это разность между падениями напряжений на транзисторах. При помощи калибровки датчика внешними цепями можно увеличить точность измерения, которая находится в диапазоне от +-1С до +-3С. Датчики обладают тремя выходами, один из них используется для калибровки.
- Цифровой датчик. В отличие от аналогового датчика цифровой содержит дополнительные элементы – встроенный АЦП и формирователь сигнала. Подключаются по интерфейсам SPI, I2C, 1-Wire, что позволяет подключать сразу несколько датчиков к одной шине. Подобные устройства стоят немного дороже аналоговых, но при этом они значительно упрощают схемотехнику устройства.
- Существуют и другие датчики температуры. Например, для автоматических систем могут применяться сигнализаторы, также существуют пирометры, измеряющие энергию тела, которую оно излучает в окружающую среду. В медицине нередко используются акустические датчики – их принцип работы заключается в разности скорости звука при различных температурах. Эти датчики удобно применять в закрытых полостях и в недоступных средах. Похожие датчики – шумовые, они работают на зависимости шумовой разности потенциалов на резисторе от температуры.
Выбор датчика в первую очередь определяется температурным диапазоном измерения. Важно учитывать и точность измерения – для обучения вполне сойдет датчик с малой точностью, а для научных работ и опытов требуется высокая надежность измерения.
Датчики температуры для работы с Ардуино
При работе с микроконтроллером Ардуино наиболее часто используются следующие датчики температуры: DS18B20, DHT11, DHT22, LM35, TMP36.
Датчик температуры DS18B20
DS18B20 – цифровой 12-разрядный температурный датчик. Устройство доступно в 3 вариантах корпусов – 8-Pin SO (150 mils), 8-Pin µSOP, и 3-Pin TO-92, чаще всего используется именно последний. Он же изготавливается во влагозащитном корпусе с тремя выходами. Датчик прост и удобен в использовании, к плате Ардуино можно подключать сразу несколько таких приборов. А так как каждое устройство обладает своим уникальным серийным номером, они не перепутаются в результате измерения. Важной особенностью датчика является возможность сохранять данные при выключении прибора. Также DS18B20 может работать в режиме паразитного питания, то есть без внешнего питания через подтягивающий резистор. Подробная статья о ds18b20.
Датчики температуры DHT
DHT11 и DHT22 – две версии датчика DHT, обладающие одинаковой распиновкой. Разливаются по своим характеристикам. Для DHT11 характерно определение температуры в диапазоне от 0С до 50С, определение влажности в диапазоне 20-80% и частота измерений 1 раз в секунду. Датчик DHT22 обладает лучшими характеристиками, он определяет влажность 0-100%, температурный диапазон увеличен – от -40С до 125С, частота опроса 1 раз за 2 секунды. Соответственно, стоимость второго датчика дороже. Оба устройства состоят из 2 основных частей – это термистор и датчик влажности. Приборы имеют 4 выхода – питание, вывод сигнала, земля и один из каналов не используется. Датчик DHT11 обычно используется в учебных целях, так как он показывает невысокую точность измерений, но при этом он очень прост в использовании. Другие технические характеристики устройства: напряжение питания от 3В до 5В, наибольший ток 2,5мА. Для подключения к ардуино между выводами питания и выводами данных нужно установить резистор. Можно купить готовый модуль DHT11 или 22 с установленными резисторами.
Датчик температуры LM35
LM35 – интегральный температурный датчик. Обладает большим диапазоном температур (от -55С до 150С), высокой точностью (+-0,25С) и калиброванным выходом. Выводов всего 3 – земля, питание и выходной мигнал. Датчик стоит дешево, его удобно подключать к цепи, так как он откалиброван уже на этапе изготовления, обладает низким сопротивлением и линейной зависимостью выходного напряжения. Важным преимуществом датчика является его калибровка по шкале Цельсия. Особенности датчика: низкая стоимость, гарантированная точность 0,5С, широкий диапазон напряжений (от 4 до 30В) ток менее 60мА, малый уровень собственного разогрева (до 0,1С), выходное сопротивление 0,1 Ом при токе 1мА. Из недостатков можно выделить ухудшение параметров при удалении на значительное расстояние. В этом случае источниками помех могут стать радиопередатчики, реле, переключатели и другие устройства. Также существует проблема, когда температура измеряемой поверхности и температура окружающей среды сильно различаются. В этом случае датчик показывает среднее значение между двумя температурами. Чтобы избавиться от этой проблемы, можно покрыть поверхность, к которой подключается термодатчик, компаундом.
Схема подключения к микроконтроллеру Ардуино достаточно проста. Желательно датчик прижимать к контролируемой поверхности, чтобы увеличить точность измерения.
- Использование в схемах с развязкой по емкостной нагрузке.
- В схемах с RC цепочкой.
- Использование в качестве удаленного датчика температуры.
- Термометр со шкалой по Цельсию.
- Термометр со шкалой по Фаренгейту.
- Измеритель температуры с преобразованием напряжение-частота.
- Создание термостата.
TMP36 – аналоговый термодатчик
Датчик температуры Использует технологии твердотельной электроники для определения температуры. Устройства обладают высокой точностью, малым износом, не требуют дополнительной калибровки, просты в использовании и стоят недорого. Измеряет температуру в диапазоне от -40С до 150С. Параметры схожи с датчиком LM35, но TMP36 имеет больший диапазон чувствительности и не выдает отрицательное значение напряжения, если температура ниже нуля. Напряжение питания от 2,7В до 5,5В. Ток – 0.05мА. При использовании нескольких датчиков может возникнуть проблема, при которой полученные данные будут противоречивы. Причиной этого являются помехи от других термодатчиков. Чтобы исправить эту неполадку нужно увеличить задержку между записью измерений. Низкое выходное сопротивление и линейность результатов позволяют подключать датчик напрямую к схеме контроля температуры. TMP36 также, как и LM34 обладает малым нагревом прибора в нормальных условиях.
Используете аналоговый датчик температуры около 3-фазного 150V, 40A Motor Controller?
eenelson
Я ищу предложения о том, какой тип датчика температуры использовать. Мне нужно подключить его к тепловой синхронизации 150-вольтового 3-фазного контроллера двигателя. Контроллер мотора находится в замкнутом пространстве, и мне нужен монитор для отвода тепла от контроллера.
Всякий раз, когда контроллер двигателя работает, я вижу значительный всплеск показаний температуры, поскольку он является аналоговым, вызванным наведенным напряжением от ЭДС, создаваемой 3-фазным выходом.
Мои нынешние мысли состоят в том, чтобы использовать простой термистор с присоединенной к нему экранированной витой парой, но я подумал, что у меня возникнет идея, как можно получить датчик, независимый от ЭМП.
Dejvid_no1
eenelson
транзистор
Лист данных дает несколько убедительных советов по разделению.
Обратите внимание на байпасный конденсатор 0,1 мкФ на входе. Этот конденсатор должен быть керамического типа, иметь очень короткие выводы (предпочтительнее монтаж на поверхности) и располагаться как можно ближе к физической точке контакта с датчиком температуры. Поскольку эти датчики температуры работают при очень небольшом токе питания и могут подвергаться воздействию очень агрессивных электрических сред, важно минимизировать влияние радиочастотных помех (RFI) на эти устройства. Влияние RFI на эти датчики температуры в частности и на аналоговые микросхемы в целом проявляется в виде ненормального сдвига постоянного тока в выходном напряжении из-за выпрямления высокочастотного окружающего шума IC. Когда устройства работают в присутствии высокочастотного излучаемого или кондуктивного шума, танталовый конденсатор большой величины (± 2,2 мкФ), размещенный на керамическом конденсаторе 0,1 мкФ, может обеспечить дополнительную помехоустойчивость.
Таблица данных продолжается .
На рисунке 32 показан способ преобразования выходного напряжения датчика TMP35 / TMP36 / TMP37 в ток, который будет передаваться по длинному экранированному кабелю витой пары на заземленный приемник. Датчики температуры не способны работать с высоким выходным током; таким образом, стандартный транзистор PNP используется для повышения выходного тока привода схемы. Как показано в таблице на рисунке 32, значения R2 и R3 были выбраны для получения произвольного полномасштабного выходного тока 2 мА. Более низкие значения для полной шкалы тока не рекомендуются. Выходной ток минимальной шкалы, создаваемый схемой, может быть загрязнен окружающими магнитными полями, действующими в непосредственной близости от пары схема / кабель. Поскольку в схеме используется внешний транзистор, минимальное рекомендуемое рабочее напряжение для этой цепи составляет 5 В. Чтобы свести к минимуму влияние электромагнитных помех (RFI), выводы цепи и датчика температуры обойдены керамическими конденсаторами хорошего качества.
TMP36
Датчик температуры с выходом напряжения
Обзор
- Особенности и преимущества
- Подробнее о продукте
Особенности и преимущества
- Низкое рабочее напряжение питания (от +2.7 В до +5.5 В)
- Откалиброванные измерения в °C
- Масштаб 10 мВ/°C (20 мВ/°C в TMP37)
- Погрешность в диапазоне температур ±2°C (тип.)
- Линейность ±0.5°C (тип.)
- Сохраняет стабильность при больших емкостных нагрузках
- Характеристики гарантируются для диапазона от -40 °C до +125 °C, работоспособность до +150 °C
- Рабочий потребляемый ток менее 50 мкА
- Ток в режиме отключения 0.5 мкА, макс.
- Минимальные погрешности из-за самонагрева
- Сертифицирован для применения в автомобильно электронике
Подробнее о продукте
Низкий выходной импеданс TMP35/TMP36/TMP37, линейный масштаб выходного напряжения и прецизионная калибровка упрощают интерфейс со схемами регулировки температуры и аналого-цифровыми преобразователями. Все три компонента предназначены для работы с однополярным напряжением питания от 2.7 В до 5.5 В, максимум. Потребляемый ток существенно ниже 50 мкА, благодаря чему достигается минимальный самонагрев – менее 0.1°C при свободной конвекции воздуха. Компоненты также имеют функцию отключения, при которой потребляемый ток сокращается до уровня менее 0.5 мкА.
TMP35 функционально совместим с LM35/LM45 и имеет выходное напряжение 250 мВ при 25°C. Он способен измерять температуру в диапазоне от 10°C до 125°C. TMP36 имеет рабочий температурный диапазон от −40°C до +125°C, выдает выходное напряжение 750 мВ при 25°C и поддерживает измерение температур до 125°C при работе от однополярного напряжения питания 2.7 В. TMP36 функционально совместим с LM50. Масштаб выходного напряжения TMP35 и TMP36 равен 10 мВ/°C.
TMP37 предназначен для измерения температуры в диапазоне от 5°C до 100°C и имеет масштаб выходного напряжения 20 мВ/°C. Выходное напряжение TMP37 при 25°C равно 500 мВ. При работе от напряжения питания 5 В рабочий диапазон всех компонентов может быть расширен до 150°C с некоторым ухудшением погрешности.
TMP35/TMP36/TMP37 выпускаются в недорогих 3-выводном корпусе TO-92, 8-выводном корпусе SOIC_N и 5-выводном корпусе SOT-23 для поверхностного монтажа.
Продукты
Области применения и технологии
- Системы управления аккумуляторными батареями
- Передача видео
- Передача звука
- Головные устройства автомобиля и приборная панель
- Магнитное определение положения/скорости
Совместимые продукты Показать все в параметрическом поиске
Статус продукта Производство
По меньшей мере, одна модель из данной серии продукции находится в производстве и доступна для приобретения. Продукт подходит для применения в новых разработках, но возможно наличие новейших альтернатив.
ПОМОЩЬ ПО ТЕХНИЧЕСКИМ ОПИСАНИЯМ
Технические описания оптимизированы для просмотра с помощью Adobe Acrobat Reader 6.0.
Предполагается, что информация, предоставляемая Analog Devices, является точной и надежной. Однако Analog Devices не несет ответственность ни за ее использование, ни за какие либо нарушения патентов или других прав третьих лиц, которые могут следовать из использования этой информации. Спецификации подвергается изменению без уведомления об этом. Analog Devices не предоставляет никакие прямые или косвенные или иные лицензии на исключительные права или патенты. Торговые марки и зарегистрированные торговые марки — собственность их соответствующих владельцев.
Переводы этого технического описания с английского на другие языки предоставляются для удобства пользователей, однако новейшими можно считать только последние версии на английском языке.
ADXL345
Техническая документация
- Показать все (1)
- Техническое описание (1)
Техническое описание (1)
Ресурсы проектирования
Компания Analog Devices всегда уделяла повышенное внимание обеспечению максимальных уровней качества и надежности предлагаемых продуктов. Для этого мы внедряем контроль качества и надежности на каждом этапе проектирования технологических процессов и продуктов, а также на этапе производства. Нашим принципом является обеспечение «полного отсутствия дефектов» поставляемых компонентов.
Информация о PCN-PDN
- Сохранить в myAnalog Войти в myAnalog
Поддержка и обсуждения
TMP36 Обсуждения
Образцы и покупка
- Выбрать страну
Приведенные цены действительны в США и указаны только для примерного бюджетного рассчета. Цены указаны в долларах США (за штуку в указанном размере партии) и могут быть изменены. Цены в других регионах могут отличаться в зависимости от местных пошлин, налогов, сборов и курсов валют. Для уточнения стоимости обращайтесь в местные офисы продаж Analog Devices, или к официальным дистрибьюторам. Цены на оценочные платы и наборы указаны за штуку независимо от количества.
The model number is a specific version of a generic that can be purchased or sampled.
Status indicates the current lifecycle of the product. This can be one of 4 stages:
- Pre-Release: The model has not been released to general production, but samples may be available.
- Production: The model is currently being produced, and generally available for purchase and sampling.
- Last Time Buy: The model has been scheduled for obsolescence, but may still be purchased for a limited time.
- Obsolete: The specific part is obsolete and no longer available. Other models listed in the table may still be available (if they have a status that is not obsolete).
The package for this IC (i.e. DIP, SOIC, BGA). An Evaluation Board is a board engineered to show the performance of the model, the part is included on the board.
For detailed drawings and chemical composition please consult our Package Site.
Pin Count is the number of pins, balls, or pads on the device. Pin-out diagrams & pin function descriptions may be found in the datasheet.
This is the acceptable operating range of the device. The various ranges specified are as follows:
- Commercial: 0 to +70 degrees Celsius
- Military : -55 to +125 degrees Celsius
- Industrial: Temperature ranges may vary by model. Please consult the datasheet for more information.
- Automotive: -40 to +125 degrees Celsius
Indicates the packing option of the model (Tube, Reel, Tray, etc.) and the standard quantity in that packing option.
The USA list pricing shown is for BUDGETARY USE ONLY, shown in United States dollars (FOB USA per unit for the stated volume), and is subject to change. International prices may differ due to local duties, taxes, fees and exchange rates. For volume-specific price or delivery quotes, please contact your local Analog Devices, Inc. sales office or authorized distributor. Pricing displayed for Evaluation Boards and Kits is based on 1-piece pricing.
This is the date Analog Devices, Inc. anticipates that the product will ship from the warehouse. Most orders ship within 48 hours of this date.Once an order has been placed, Analog Devices, Inc. will send an Order Acknowledgement email to confirm your delivery date. It is important to note the scheduled dock date on the order entry screen. We do take orders for items that are not in stock, so delivery may be scheduled at a future date. Also, please note the warehouse location for the product ordered. We have warehouses in the United States, Europe and Southeast Asia. Transit times from these sites may vary.
Sample availability may be better than production availability. Please enter samples into your cart to check sample availability.
Due to environmental concerns, ADI offers many of our products in lead-free versions. For more information about lead-free parts, please consult our Pb (Lead) free information page.
This is the list of Product Change Notifications (PCN) and Product Discontinuance Notifications (PDN) published on the web for this model. Click on the link to access PCN/PDN information. Online PCNs are available starting in 2009 and online PDNs are available starting in 2010. To obtain older PCNs or PDNs, contact your ADI Sales Rep. For more information on ADI’s PCN/PDN process, please visit our PCN/PDN Information page.
The Purchase button will be displayed if model is available for purchase online at Analog Devices or one of our authorized distributors. Select the purchase button to display inventory availability and online purchase options.The Sample button will be displayed if a model is available for web samples. If a model is not available for web samples, look for notes on the product page that indicate how to request samples or Contact ADI.
- Сохранить в myAnalog Войти в myAnalog
- Region
- India
- Korea
- Singapore
- Taiwan
- Languages
- English
- 简体中文
- 日本語
- Руccкий
Analog Devices использует файлы cookie для повышения качества работы сайта
Некоторые файлы cookie необходимы для безопасного входа в систему, в то время как другие являются дополнительными и нужны лишь для функциональных действий. Мы собираем данные для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную функциональность, которую может предоставить наш сайт. Для получения дополнительной информации вы можете просмотреть подробные сведения о файлах cookie. Узнайте больше о политике конфиденциальности.
Используемые нами файлы cookie можно классифицировать следующим образом: