Arskama.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронный двигатель как уменьшить обороты

Как повысить эффективность электродвигателя

Большинство насосов приводятся в действие с помощью асинхронных электродвигателей, это означает, что двигатели вносят вклад в общую эффективность насосной системы.

Данная статья посвящена исследованию ключевых аспектов эффективности электродвигателя, которые находятся под контролем пользователя. 2/3 всей вырабатываемой электроэнергии, потребляются электродвигателями, которые используются в различном оборудовании на промышленных площадках всего мира.

Электродвигатели развиваются на протяжении последних 150 лет. Не смотря на то, что существует большой выбор из различных конструкций двигателей (например синхронные, асинхронные или постоянного тока), наиболее используемым в промышленности на сегодняшний день является асинхронный электродвигатель переменного тока, т.к. является более надежным. Также асинхронный электродвигатель предпочтительнее при использовании частотного преобразователя. Достаточно высокая эффективность в сочетании с простотой изготовления, высокой надежностью и низкой ценой делает его самым широко-применяемым типом двигателя по всему миру.


Рисунок 1: Асинхронный электродвигатель с короткозамкнутым ротором

На рисунке 1 показана обычная компоновка асинхронного электродвигателя с тремя обмотками статора, которые расположены вокруг сердечника. Обмотка ротора состоит из медных или алюминиевых стержней, торцы которых накоротко замкнуты кольцами. Кольца изолированы от ротора. В подшипниковом узле, как правило, используются шарикоподшипники с консистентной смазкой, за исключением очень больших двигателей. Смазка масляным туманом может значительно увеличить срок службы подшипников. Во всех асинхронных электродвигателях используется трехфазный ток, за исключением самых маленьких промышленных процессов (ниже 2 л.с.). Для запуска фазных двигателей необходимы другие средства, такие как щетки или конденсаторный пуск (использование конденсатора во время пуска).

Проблема эффективности двигателя

При использовании электродвигателя в качестве привода насоса потери энергии и падение давления в результате неэффективности насоса обычно гораздо больше, чем потери энергии связанные с неэффективностью электродвигателя, но они не являются незначительными. Оптимизация эффективности электродвигателя насоса может обеспечить реальную экономию стоимости рабочего цикла на протяжении всего срока службы насоса/электродвигателя. Ключевыми факторами, которые влияют на эффективность асинхронного двигателя являются:

  • относительная нагрузка двигателя (негабаритные двигатели находящиеся под нагрузкой)
  • скорость вращения (число полюсов)
  • размер двигателя (номинальная мощность)
  • класс двигателя: обычный КПД в сравнении с энергоэффективностью в с равнении с высоким КПД

Эффективность электродвигателя при частичной загрузке

Как показано на рисунке 2, эффективность асинхронного электродвигателя изменяется вместе с
относительной нагрузкой на электродвигатель по сравнению с номинальной характеристикой. Вплоть до нагрузки в 50% эффективность большинства электродвигателей остается линейной и для некоторых электродвигателей достигает пика у отметки 75%. Электродвигатели могут работать при нагрузке меньше 50% только в течение короткого промежутка времени и не могут эксплуатироваться при нагрузках меньше 20% от номинальных. Таким образом, когда отрегулированные рабочие колеса или насосы возвращаются к своим кривым «напор-подача», необходимо оценить воздействие относительной нагрузки на электродвигатель.

Рисунок 2: Эффективность электродвигателя для 100-сильных моторов — Обычные кривые характеристик при нормальном диапазоне нагрузок электродвигателя

Скорость вращения

На рисунке 2 также показано влияние скорости вращения на максимально-достижимую эффективность. 4-х полюсный электродвигатель при номинальных 1800 об/мин выходит на самый высокий КДП, а 2-х полюсный при номинальных 3600 об/мин дает низкую эффективность. Таким образом, хотя насосы с номинальной частотой вращения 3600 об/мин могут быть более эффективными (и иметь низкую закупочную стоимость), чем насосы со скоростью вращения 1800 об/мин, электродвигатели последних могут быть более эффективными, плюс эти насосы, как правило, имеют более низкий NPSHR и энергию всасывания, не говоря уже о более длительном сроке службы. Также следует отметить, что номинальная мощность электродвигателя влияет на его эффективность, большие электродвигатели имеют большую эффективность, чем малые.

Скорость вращения асинхронного электродвигателя

Синхронная скорость вращения асинхронного электродвигателя рассчитывается по следующей формуле:
n = 120*f/p
где:
n = скорость вращения в об/мин
f = частота питающей сети (Гц)
p = количество полюсов (min = 2)

Для регулирования частоты вращения электродвигателя без использования внешних механических устройств необходимо регулировать напряжение и частоту подаваемого тока. Некоторые электродвигатели могут быть изготовлены с несколькими обмотками (количество полюсов) для достижения двух или более различных скоростей вращения.

Асинхронные электродвигатели вращаются со скоростью, которая меньше скорости вращения магнитного поля (на 1-3% при полной нагрузке). Разница между фактической и синхронной частотой вращения называется скольжением. Для новых более энергоэффективных электродвигателей скольжение имеет тенденцию уменьшаться в отличие от старых электродвигателей с обычным КПД. Это означает, что при заданной нагрузке энергоэффективные электродвигатели работают немного быстрее.

Рисунок 3. Эффективность при полной и частичной загрузке двигателя с низким и высоким КПД

Электродвигатели с высоким КПД

На рисунке 3 изображен пример возможного повышения эффективности, когда старый электродвигатель с обычной эффективностью заменяется новым, имеющим более высокий КПД. Как упоминалось ранее, электродвигатели с высоким КПД работают с меньшим скольжением, что дает некоторое увеличение скорости вращения, а следовательно напор насоса и производительность становятся несколько больше.

Однако, использование электродвигателей с высоким КПД в некоторых (с изменением подачи) процессах будет не оправданно, из-за большей скорости вращения (и напора насоса), до тех пор пока существующие электродвигатели по-прежнему слабо загружены (работающие с низким КПД). Т.к. входная мощность на валу насоса пропорциональна скорости в кубе, простая замена старого электродвигателя новым с высоким КПД не обязательно приведет к снижению потребления энергии.

С другой стороны, если немного большая подача и напор для насоса — это хорошо, замена старого
электродвигателя с обычным КПД на новый с высоким КПД может быть оправдана.

Коэффициент мощности электродвигателя

Другая проблема, которая входит в игру с характеристиками асинхронного электродвигателя (которая имеет косвенное влияние на энергопотребление) называется «Коэффициент Мощности«. Некоторые
коммунальные предприятия обязывают клиентов платить дополнительные сборы за низкие значения
коэффициентов мощности. Потери в сети происходят за счет того, что при меньшем коэффициенте
мощности требуется большее количество тока, что приводит к серьезным потерям энергии. Как и КПД,
коэффициент мощности электродвигателя также снижается с уменьшением нагрузки на него практически по линейному закону приблизительно до 50% нагрузки.

Определение коэффициента мощности:

Фазовый сдвиг (задержка) синусоидальной волны тока от синусоиды напряжения, который выбарабывает меньшее количество полезной мощности.
Сдвиг, вызванный необходимым током намагничивания двигателя
PF = Pi/KVA
Где:
KVA = VxIx(3) 0.5 /1,000

Нижняя формула показывает, как коэффициент мощности влияет на входную мощность трехфазного
электродвигателя (кВт). Обратите внимание, что чем ниже коэффициент мощности (больший сдвиг фазы ток-напряжение VA), тем меньше входная мощность при данном входном токе и напряжении.
Где:
Pi = VxIxPF(3) 0.5 /1,000

Pi= трехфазный вход кВт
V= среднеквадратичное напряжение (среднее от 3 фаз)
I= среднеквадратичное значение силы тока в амперах (берется от 3 фаз)
PF= коэффициент мощности в виде дроби

Хотя коэффициент мощности не влияет напрямую на КПД электродвигателя, он оказывает влияние на потери в сети, как это упоминалось выше. Однако, есть способы увеличения PF (коэффициента мощности), а именно:

  • покупка электродвигателей с изначально высоким PF
  • не покупайте слишком большие электродвигатели (коэффициент мощности падает вместе с уменьшением
  • нагрузки на электродвигатель)
  • установка компенсирующих конденсаторов параллельно с обмотками электродвигателя
  • увеличить полную загрузку коэффициента мощности до 95% (Max)
  • преобразование в привод с частотным регулированием

Пусковые конденсаторы электродвигателей являются одним из наиболее поппулярных способов увеличения коэффициента мощности и имеют следующий список преимуществ:

  • увеличение PF
  • меньшение реактивного тока от электрооборудования через кабели и пускатели электродвигателейменьшее тепловыделение и потери мощности кВт
  • По мере уменьшения нагрузки на электродвигатель растет возможность экономии, а PF
  • падает ниже 60%-70%. (возможная экономия 10%)
  • Уменьшение сборов за коэффициент мощности
  • Увеличение общей производительности системы
  • Интеллектуальная система управления электродвигателем
  • Частотно-регулируемый электропривод

Более высокое напряжение
Другим способом повышения КПД электродвигателя является повышение рабочего напряжения. Чем выше напряжение, тем ниже ток и, тем самым будут ниже потери в сети. Однако, высокое напряжение приведет к увеличению цены частотно-регулируемого привода и сделает работу более опасной.

Выводы
Таким образом, когда вы пытаетесь сократить энергопотребление насосных систем не забывайте о
КДП электродвигателя и факторах, перечисленных выше, которые на него влияют.

Асинхронные двигатели популярно

В этой научно-популярной обзорной статье рассмотрим некоторые вопросы, которые позволят читателю расширить и закрепить свои знания о мире двигателей.

Читать еще:  Mitsubishi lancer датчик температуры двигателя

Экспресс-знакомство

В настоящее время на практике в подавляющем большинстве случаев применяют асинхронные электродвигатели с короткозамкнутым ротором. Они имеют сравнительно простую конструкцию, и относительно недороги.

Для работы асинхронного двигателя нужно обязательно трехфазное напряжение, которое, благодаря обмоткам статора, создает вращающееся магнитное поле внутри двигателя. Это поле вращает ротор двигателя, который, в свою очередь, передает вращение на нагрузку. Например, редуктор или лопасти вентилятора.

Изменяя конфигурацию обмоток статора (количество пар полюсов), можно менять основную характеристику асинхронного двигателя — частоту оборотов. Мощность на валу двигателя зависит от мощности, получаемой электродвигателем от сети.

Другие виды

Другие двигатели, которые в настоящее время также находят применение — это электродвигатели постоянного тока. Они имеют щетки (рисунок 1), которые подвержены износу и искрению. Также, необходима обмотка подмагничивания (возбуждения), на которую подается постоянное напряжение. Несмотря на эти недостатки, электродвигатели постоянного тока находят применение там, где нужно быстрое изменение скорости вращения и контроль момента, а также при мощностях более 100 кВт.

Рисунок 1. Электродвигатель постоянного тока.

В быту также применяют коллекторные (щеточные) электродвигатели переменного тока, которые имеют низкую надежность по сравнению с асинхронными.

Другие типы двигателей — серводвигатели и шаговые двигатели — применяют сравнительно редко в случаях, когда необходимо сверхточное позиционирование нагрузки на валу. Например, в координатных станках.

В однофазной сети

Мы уже говорили выше, что для работы асинхронного двигателя нужно вращающееся магнитное поле, которое обеспечивается трехфазным напряжением.

Однако, часто есть необходимость питать такой двигатель от бытовой однофазной сети 220 В. В случае работы асинхронного двигателя в однофазной сети применяют фазосдвигающие и пусковые конденсаторы. При этом получают подобие трехфазной питающей сети. Номинальную мощность на валу получить не получится, приходится рассчитывать на 70–80% от номинала.

Это происходит из-за того, что не удается обеспечить отсутствие перекоса по фазам при изменении нагрузки.

Способы управления

Управление электродвигателем подразумевает возможность изменения его скорости и мощности (момента). Так, если на асинхронный двигатель подать напряжение нужной величины и частоты, он будет вращаться с номинальной частотой, и сможет обеспечить мощность на валу не более номинальной. Если же нужно понизить или повысить скорость электродвигателя, в основном применяют преобразователи частоты (ПЧ) — рисунок 2. Благодаря этому для двигателя можно обеспечить нужный режим разгона, торможения, а также управлять частотой работы оперативно, по желанию оператора оборудования.

Рисунок 2. Преобразователь частоты Schneider Electric.

Если нужно обеспечить требуемый разгон и торможение без изменения рабочей частоты, то применяют устройство плавного пуск (УПП). Если нужно управлять только разгоном двигателя для минимизации пусковых токов, то применяют схему включения «звезда-треугольник».

Для подачи питания на двигатель без ПЧ и УПП также широко применяются контакторы, которые позволяют дистанционно управлять пуском, остановом и реверсом.

Управление запуском

Запуск может происходить в простейшем случае от кнопки «Пуск». Но за этой кнопкой может скрываться, например, контроллер, который действует по сложной программе и выдает сигнал на запуск преобразователя частоты. Также кнопка запуска может быть непосредственно подключена ко входу управления ПЧ или УПП.

В классическом варианте, когда двигатель запускается через контактор, кнопка «Пуск» подает питание на катушку контактора, контактор включается, и своим дополнительным (блокировочным) контактом становится на самоподхват.

Остановка производится кнопкой «Стоп», которая обычно имеет нормально замкнутые контакты.

Направление вращения

Реверс двигателя — важная функция в его управлении. Осуществляется реверс очень простым способом — нужно поменять местами любые две питающие фазы.

Реализуется это в контакторной схеме путем использования двух контакторов, каждый из которых имеет свой порядок фаз. Контакторы имеют обязательно механическую и электрическую блокировки, чтобы избежать возможности одновременного включения.

Вращение может быть прямым и обратным. Прямое вращение распознать очень просто. Стоит посмотреть двигателю «в зад», и, если вал крутится по часовой стрелке — это прямое вращение.

Как определить мощность

Иногда нужно на практике узнать, какой двигатель перед нами. Проще всего определить номинальную мощность электродвигателя по его шильдику (рисунок 3). На нем указана механическая мощность (мощность на валу), которая всегда меньше потребляемой мощности за счет КПД двигателя (потерь на трение и нагрев). Однако, если шильдик на корпусе двигателя отсутствует, то можно ориентировочно определить мощность по его габаритам. При одинаковой мощности при большем диаметре вала мощность навалу будет больше, а частота оборотов — меньше.

Рисунок 3. Шильда механической мощности двигателя.

Также, определить мощность можно по нагрузке, а также по уставкам защитных устройств, через которые питается двигатель (мотор-автомат, тепловое реле).

Другой способ — нужно включить двигатель на номинальную мощность, обеспечив нужную нагрузку на валу. После этого, померить токоизмерительными клещами ток двигателя, который должен быть по всем обмоткам одинаков. На основании измеренного тока можно оценить мощность двигателя. Приблизительно оценить мощность асинхронного двигателя, при подключении его по схеме «звезда» можно, разделив его номинальный измеренный ток на 2.

Регулировка оборотов

Управление скоростью вращения двигателем может быть в трех режимах работы — при разгоне, в рабочем режиме, и при торможении.

Наиболее универсальным способом управления оборотами двигателя во всех перечисленных режимах является применение преобразователя частоты. Настройками можно добиться любой частоты вращения в пределах технической возможности. При этом можно управлять и другими параметрами электродвигателя, а также следить за его состоянием во время работы. Частоту можно менять и плавно, и ступенчато. Возможно управление от дистанционного пульта или с контроллера по цифровому каналу связи.

Управление оборотами двигателя только в режиме разгона и торможения возможно при использовании УПП — рисунок 4. Это устройство позволяет значительно снизить пусковой ток за счет плавного разгона с медленным увеличением оборотов.

Рисунок 4. Устройство управление оборотами двигателя ABB.

Торможение

В некоторых устройствах, например, лифтах, крайне необходимо при остановке двигателя зафиксировать его вал в неподвижном состоянии. Для этого применяют электромагнитный механический тормоз, который закреплен в задней части двигателя и входит в его конструкцию.

Управление тормозом происходит от ПЧ или схемы на контакторах. Важно, чтобы это происходило синхронно с остановом двигателя.

Рисунок 5. Электродвигатель с тормозом с креплением через фланец.

На рисунке 5 показан электродвигатель с тормозом с креплением через фланец. Также применяют электрическое торможение постоянным током. Для этого через ПЧ или диодный выпрямитель подают на обмотки двигателя постоянное (однополярное) напряжение в 3–4 раз меньше номинального рабочего.

Неисправности

Большинство неисправностей электродвигателей проявляется их нагревом.

Причины неисправностей могут быть следующие:

  • износ подшипников и повышенное механическое трение;
  • увеличение нагрузки на валу;
  • перекос напряжения питания;
  • пропадание фазы;
  • замыкание в обмотке из-за ухудшения изоляции;
  • проблема с обдувом (охлаждением).

Неисправности электродвигателей можно разделить на два вида: электрические и механические.

К электрическим можно отнести неисправности, связанные с обмоткой:

  • межвитковое замыкание;
  • замыкание обмотки на корпус;
  • обрыв обмотки.

Для устранения этих неисправностей требуется перемотка двигателя.

  • износ и трение в подшипниках;
  • проворачивание ротора на валу;
  • повреждение корпуса двигателя;
  • проворачивание или повреждение крыльчатки обдува.

Замена подшипников должна производиться регулярно, учитывая их износ и срок службы. Повреждение крыльчатки устраняется путем ее замены. Остальные неисправности устранению практически не подлежат, и в таких случаях двигатель подлежит замене.

Защита

Как было сказано выше, основной причиной неисправностей двигателя является его перегрев. Сам перегрев, как правило, является следствием каких-либо аномальных электрических или механических режимов работы.

Следовательно, предотвратив перегрев, можно отключить и сохранить двигатель в исправном состоянии. Для этого используются три основных способа:

Электронный контроль тока — этот способ используется в электронных устройствах пуска двигателей — ПЧ и УПП. С помощью встроенного трансформатора тока происходит его измерение, а встроенный контроллер принимает решение об остановке двигателя.

Тепловой контроль тока. Для этого применяются устройства тепловой защиты — тепловые реле или защитные мотор-автоматы. В них имеется возможность выставить точно токовую уставку, при которой реле или автомат отключат питание двигателя.

Читать еще:  В чем измеряют мощность двигателя автомобиля

Непосредственный контроль температуры корпуса и обмоток реализуется за счет терморезистора или термоконтакта, встроенного внутрь корпуса двигателя. Недостаток этого способа — большая инерционность, и его обычно применяют как дополнительный способ защиты.

Александр Ярошенко, автор блога SamElectric.ru

Контакты:

Следите за нами в Life-режиме в Instagram
Деловые поездки, офисная жизнь, актуальные разработки в мире электротехники

Как уменьшить обороты вентилятора вытяжки

Допустим, что в ожидании жарких летних дней, вы когда-то купили вентилятор. Недорогой, и, как водится, китайский. Рассчитанный на несколько режимов работы. Но включив его в сеть, обнаружили, что даже на самом минимальном режиме вентилятор выдает слишком большие обороты и довольно сильно шумит. Что же делать в такой ситуации?

Так вот – отказываться от покупки и пытаться вернуть изделие производителю совершенно не обязательно. Уменьшить шум от бытового вентилятора можно и самому – при наличии минимальных знаний в электротехнике и умения работать паяльником.

Как же можно уменьшить рвение вентилятора?

Начнем с того, что чрезмерность усилий китайских вентиляторов часто объясняется вполне уважительными причинами – в Поднебесной напряжение в бытовых электрических сетях, как правило, не дотягивает до заявленных 220 вольт, а в России часто оказывается даже несколько выше. Отсюда и избыточная мощность китайских изделий в наших условиях.

Что в таком случае делать – понятно: надо принять меры к тому, чтобы снизить подаваемое на двигатель вентилятора напряжение.

Для этого есть два способа.

Первый способ будет состоять в том, чтобы приладить к вентилятору путем последовательного соединения еще какую-нибудь нагрузку. В принципе для этого подойдет обычная электрическая лампочка на 40 ватт. Но «вентилятор с подстветкой» будет выглядеть слишком оригинально – поэтому для уменьшения числа его оборотов разумнее будет воспользоваться неполярным конденсатором на 400 вольт с емкостью от 1 до 10 микрофарад. Этот конденсатор для переменного тока будет играть ту же роль, что и сопротивление для постоянного.

Правда, заранее определить какая именно емкость подойдет сказать сложно – это будет зависеть и от колебаний напряжения в сети и от модели вентилятора. Но беда невелика – такие конденсаторы в магазинах радиодеталей стоят от 5 до 12 рублей – так что можно подобрать нужный просто подбором.

Однако есть одна тонкость – двигатели в вентиляторах могут быть разными. Если двигатель однофазный или фазороторный, то пр снижение рабочего напряжения он просто сбавит обороты будет меньше шуметь. Но если электродвигатель в вентиляторе поставлен асинхронный, то снижение шума от скорости вращения будет «скомпенсировано» его специфическим гудением, что нежелательно.

Поэтому для регулирования скорости вращения асинхронного двигателя потребуется второй способ регулировки – путем изменения мощности.

Чтобы самостоятельно собрать такое устройство потребуется уже немалая сноровка, но самому это делать и не потребуется – такие изделия можно купить в магазинах радиодеталей по цене 250-300 рублей.

В натуральном виде приборчик представляет собой плату из текстолита размерами 28 на 24мм.- так что его можно будет без особых проблем вставить под корпус вентилятора. Благо, что на плате имеются монтажные отверстия под винт диаметром 3 мм.

Знающие люди дайте совет как уменьшить раза в два скорость вентилятора в санузле. Параметры: 220 вольт, 50 герц, 16 ват. Ато завывает на всю квартиру слышно.

Дубликаты не найдены

Диодом не стоит, движку может не понравиться «полусинусоида».

Емкость точно 10? Не 0,5-1?

я бы взял на 400 в (пиковое напряжение в сети 310 в. я не уверен что означает номинал на корпусе. RMS или пиковое. скореетвсего первое, но лучше взять с запасом).

и заодно можно взять еще и на 5 мкф. чтобы проверить какой из них достаточно ослабит ваш вентилятор

Каков результат? Помогло? Сильно снизило скорость и шум?

Нет. Приобрел другой.

Благодарю за развернутый ответ

Возвращаешь этот вентилятор в магазин. Покупаешь менее мощный, с производительностью адекватной объему твоего санузла.

Выбирая вентилятор обрати внимание на уровень шума – характеристика указывается практически для всех моделей.

Вариант 3. Я бы выбрал именно его.

Конкретно твоя модель вентилятора двухскоростная. Скорость меняется схемой подключения к клемной колодке во внутренностях вентилятора. Разверни инструкцию (это бумажка такая с буквами в коробке с вентилятором) и внимательно прочти ее. Не перепутай входы, а то спалишь двигло к хуям.

Вот характеристики с этикетки:

Volage -220v
Power – 25w
Electrical Frenguency – 50Hz

Что можно придумать? может поставить в цепь выключатель света с регулятором?

Если двигатель асинхронный то понизить напряжение.Понижающий трансформатор,ЛАТР.
Симисторный регулятор может вызвать гудение(ток не синусоидальный),надо проверять.
Световые регуляторы работают от 0 до 220в и имеют в основном линейную регулировочную характеристику переменного резистора.Выключатель от 0в.
Вентиляторные от 110-220в ,выключатель от 220в чтобы вентилятор стартовал от максимального момента ,и логарифмическую характеристику переменного резистора(сопротивление раза в 2 и более ниже).
Так как многие асинхронники не стартуют от 140-150в то ставят подстроечный резистор для стартового напряжения конкретного вентилятора.И основная регулировка происходит в диапазоне 160-200в,поэтому этот участок регулировки должен быть растянут.

Так что переделать турецкий диммер в вентиляторный регулятор вполне по силам радиолюбителю.

Световые регуляторы ставить нельзя.
Симисторный регулятор можно купить за 1500-2000руб – самый лучший вариант по-моему.
типа MTY 1.5
Но есть 1 неприятный момент – на низких оборотах вентилятор начинает гудеть, т.к. симистор режет синусоиду тока.
Чем ниже обороты, тем как правило сильнее гудит.

А конденсатор металлобумажный в разрыв провода забыли предложить? Вопрос вообще копеечный.
Главное чтоб были рассчитаны на 400 Вольт. Ёмкость подбирать от 0.5 до 2 мкФ.

Я поставил последовательно пару по 1 мкФ на 250 Вольт. В старых чешских телефонных розетках были.
По факту получилось 0.5 мкФ 500 Вольт. Помогло.

Тоже сейчас задался таким вопросом. Турецкий диммер попробовал – обороты уменьшаются, но, действительно, появляется гул. Да и сгорел он через 3 минуты работы. Понравилась идея с конденсатором – что, в самом деле, все так просто? Спасибо, надо попробовать!

Вадим М ; Я же говорил обычный диммер ставить нельзя)))

Вадим М написал :
Турецкий диммер попробовал – обороты уменьшаются, но, действительно, появляется гул. Да и сгорел он через 3 минуты работы.

А у меня переделанный уже 5 лет работает.Чему там гореть?Если симистор на ток 16А а вентилятор потребляет миллиамперы и радиатор не нужен?Бу-га-га.
Динистору?Только если бракованный.
Гул идёт и от фирменного вентиляторного симисторного регулятора ,который втрое дороже-имею и такой.Принцип работы у них абсолютно одинаковый-ток на выходе не синусоидальный.

С конденсатором просто но нет плавной регулировки.Хоть пакетник ставь.

Ах да есть старинная древняя схема диммеров с которой индукционная нагрузк типа асинхронников и коллекторных дв не работает.
Но в современных схемах она не применяется-деталей много.

gotman написал :
Я же говорил обычный диммер ставить нельзя)))

Не говори ерунду!Смотри схему!
Брак,левак и косяк никто не отменял.

Popadopulos написал :
С конденсатором просто но нет плавной регулировки.

Плавная и не нужна. Подобрал чтоб сильно вентилятор не завывал да и ладно.

FAV1976 написал :
Плавная и не нужна. Подобрал чтоб сильно вентилятор не завывал да и ладно.

Во, именно такой результат и нужен мне.

Оба на ноль вешать?

Какой из этих » > подойдёт для моего вентилятора?
Погуглил, пишут что -Ни в коем случае НЕ ИСПОЛЬЗОВАТЬ электролитические конденсаторы.

Оба или сколько- как подберете. На ноль или на фазу пофигу.
Нужны МБ конденсаторы. Они не полярные.
Быстрее из плат от мониторов и телеков надергаешь.
А дальше методом последовательно-параллельного соединения конденсаторов найдёте то что надо.

FAV1976 , не могли бы Вы написать для несведущих, какой конкретно маркировки конденсаторы надо брать? Чтобы можно было придти на Митинский радиорынок и сказать: «Дайте мне конденсатор такой-то на 1 микрофарад 400 вольт». А то старых телевизоров и мониторов под рукой сейчас нет, а чехословацкие телефонные розетки видел последний раз в детстве (и то, по-моему, они были польскими и болгарскими

Читать еще:  Двигатель 1zz как то шумит

В чипе упоминаются тут:
» >
Только в наличии нету.
А вот тут картинок много:
» >
Бывают и такие.
Смотри ёмкость и напряжение.

FAV1976 написал :
Нужны МБ конденсаторы. Они не полярные.

Чем плёночные не угодили: » > ?

Я бы для этих целей лучше-бы применил специально предназначенный для этого автотрансформатор: » >

Designman ; А мотор гудеть, как с диммером не будет?

Designman , Предложили бы сразу транс от сварочного аппарата.

Вадим М , Во всех кухонных вытяжках для ступенчатой регулировки оборотов вентилятора производители используют именно конденсаторы.
Митинский сегодня работает. До обеда уже всё сделаете.

Вадим М написал :
А мотор гудеть, как с диммером не будет?

FAV1976 написал :
Designman, Предложили бы сразу транс от сварочного аппарата.

Зато отдают его почти даром

FAV1976 написал :
Во всех кухонных вытяжках для ступенчатой регулировки оборотов вентилятора производители используют именно конденсаторы.

Да?А у меня Фокс имеет нормальный асинхронный мотор с 3 переключаемыми обмотками.
Даже паршивый китайский вентилятор за 6 долларов имеет 3 обмотки для переключения скорости.

Вадим М написал :
а подстроечных таких конденсаторов не бывает?

Нет.Вам подойдёт любой не полярный конденсатор.Скажите для асинхронного двигателя и параметры-там поймут.

Колхозники с конденсаторами! Специально предназначенные регуляторы никто предложить не догадался? » >

Если с конденсаторами получится уменьшить обороты без ущерба для двигателя, то почему бы и не «поколхозить». Спасибо всем за пракиическую помощь, как в Митино за конденсаторами выберусь, обязательно отчитаюсь о результате модернизации своего шумящего агрегата.

Совок все еще правит балом, даже в Москве

Вадим М написал :
Спасибо всем за пракиическую помощь, как в Митино за конденсаторами выберусь

Напруга не менее 400В кстати. Лучше 660В. А емкость то какую брать будешь?

andrewkhv написал :
Специально предназначенные регуляторы никто предложить не догадался?

Они тиристорные – гудят на частичных режимах не по децки. А товарищу нужно задавить вент. именно из-за шума.
Даже когда дБ не много – они жутко раздражают, ибо по спектру как раз попадают в противную область частот.

Vladimir_Vas написал :
Они тиристорные – гудят на частичных режимах не по децки.

А чем этот плох? » >

tsv ; Прежде всего, ценой.

Да.Одни асинхронные двигатели гудят ,другие не очень.Зависит от конструкции.Другие даже крутится не хотят.

«В каталоге Вентса есть 2 модели регуляторов скорости вентиляторов, с монтажом в стандартный подрозетник: » >
Вопрос: чем эти регуляторы отличаются от обычных диммеров?»
Чем они от турецкого диммера отличаются я выше описал и лично переделывал турецкий диммер по образцу Вентса(симистор,динистор,2 конденсатора,4 резистора,переменный резистор-выключатель,подстроечный резистор,предохранитель,и конденсатор или варистор).Бу-га-га ничем от диммера практически не отличается.
Формой синусоиды от диммера как раз не отличается.

Идеальный не частотный регулятор синусоидального напряжения ЛАТР или регулируемый Лабораторный автотрансформатор(есть маленькие).Позволяет получить на выходе 250в и немного даже повысить частоту оборотов асинхронного вентилятора от номинального.

Для некоторых дюже вумных -частота вращения вентилятора с асинронником зависит от сопротивления и момента на валу.А момент зависит. сами найдёте.
Так что таки да -разгоняет.Ещё как разгоняет!

Способы регулирования скорости асинхронного двигателя

Почти все станки в качестве электропривода оснащаются асинхронными двигателями. У них простая конструкция и не высокая стоимость. В связи с этим важным оказывается регулирование скорости асинхронного двигателя. Однако в стандартной схеме включения управлять его оборотами можно только с помощью механических передаточных систем (редукторы, шкивы), что не всегда удобно. Электрическое управление оборотами ротора имеет больше преимуществ, хотя оно и усложняет схему подключения асинхронного двигателя.

Для некоторых узлов автоматического оборудования подходит именно электрическое регулирование скорости вращения вала асинхронного электродвигателя. Только так можно добиться плавной и точной настройки рабочих режимов. Существует несколько способов управления частотой вращения путём манипуляций с частотой, напряжением и формой тока. Все они показаны на схеме.

Из представленных на рисунке способов, самыми распространёнными для регулирования скорости вращения ротора являются изменение следующих параметров:

  • напряжения подаваемого на статор,
  • вспомогательного сопротивления цепи ротора,
  • числа пар полюсов,
  • частоты рабочего тока.

Последние два способа позволяют изменять скорость вращения без значительного снижения КПД и потери мощности, остальные способы регулировки способствуют снижению КПД пропорционально величине скольжения. Но и у тех и других есть свои преимущества и недостатки. Поскольку чаще всего на производстве применяются асинхронные двигатели с короткозамкнутым ротором, то все дальнейшие обсуждения будут касаться именно этого типа электродвигателей.

Для частотного регулирования применяют в основном полупроводниковые преобразователи. Их принцип действия основан на особенности работы асинхронного двигателя, где частота вращения магнитного поля статора зависит от частоты напряжения питающей сети. Скорость вращения поля статора определяется по следующей формуле:

n1 = 60f/p, где n1 — частота вращения поля (об/мин), f-частота питающей сети (Гц), p-число пар полюсов статора, 60 — коэффициент пересчета мерности.

Для эффективной работы асинхронного электродвигателя без потерь нужно вместе с частотой изменять и подаваемое напряжение. Напряжение должно меняться в зависимости от момента нагрузки. Если нагрузка постоянная, то напряжение изменяется пропорционально частоте.

Современные частотные регуляторы позволяют уменьшать и увеличивать обороты в широком диапазоне. Это обеспечило их широкое применение в оборудовании с управляемой протяжкой, например, в многоконтактных станках сварной сетки. В них скорость вращения асинхронного двигателя, приводящего в движение намоточный вал, регулируется полупроводниковым преобразователем. Такая регулировка позволяет оператору, следящему за правильностью выполнения технологических операций, ступенчато ускоряться или замедляться по мере настройки станка.

Остановимся на принципе работы преобразователя частоты более подробно. В его основе лежит принцип двойного преобразования. Состоит регулятор из выпрямителя, импульсного инвертора и системы управления. В выпрямителе синусоидальное напряжение преобразуется в постоянное и подаётся на инвертор. В составе силового трёхфазного импульсного инвертора есть шесть транзисторных переключателей. Через эти автоматические ключи постоянное напряжение подаётся на обмотки статора так, что в нужный момент на соответствующие обмотки поступает то прямой, то обратный ток со сдвигом фаз 120°. Таким образом, постоянное напряжение трансформируется в переменное трёхфазное напряжение нужной амплитуды и частоты.

Необходимые параметры задаются через модуль управления. Автоматическая регулировка работы ключей осуществляется по принципу широтно-импульсной модуляции. В качестве силовых переключателей используются мощные IGBT-транзисторы. Они, по сравнению с тиристорами, имеют высокую частоту переключения и выдают почти синусоидальный ток с минимальными искажениями. Не смотря на практичность таких устройств, их стоимость для двигателей средней и высокой мощности остаётся очень высокой.

Регулировка скорости вращения асинхронного двигателя методом изменения числа пар полюсов также относится к наиболее распространённым методам управления электродвигателей с короткозамкнутым ротором. Такие моторы называются многоскоростными. Есть два способа осуществления этого метода:

  • укладывание сразу нескольких обмоток с разными числами пар полюсов в общие пазы статора,
  • применение специальной намотки с возможностью переключения существующих обмоток под нужное число пар полюсов.

В первом случае чтобы уложить в пазы дополнительные обмотки нужно уменьшить сечение провода, а это приводит к уменьшению номинальной мощности электродвигателя. Во втором случае имеет место усложнение коммутационной аппаратуры, особенно для трёх и более скоростей, а также ухудшаются энергетические характеристики. Более подробно этот и другие способы регулирования скорости асинхронного двигателя описаны в архивном файле, который можно скачать внизу страницы.

Обычно многоскоростные двигатели выпускаются на 2, 3 или 4 скорости вращения, причем 2-х скоростные двигатели выпускаются с одной обмоткой на статоре и с переключением числа пар полюсов в отношении 2 : 1 = р2 : pt , 3-х скоростные двигатели — с двумя обмотками на статоре, из которых одна выполняется с переключением 2 : 1 = Рг : Pi , 4-х скоростные двигатели — с двумя обмотками на статоре, каждая из которых выполняется с переключением числа пар полюсов в отношении 2:1. Многоскоростными электродвигателями оснащаются различные станки, грузовые и пассажирских лифты, они используются для приводов вентиляторов, насосов и т.д.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector