Arskama.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронный двигатель определение оборотов

Поддержка

10 простых советов по продлению срока службы двигателя

«Вечный двигатель» или 10 советов, как продлить его срок службы

Искать ответ на вопрос как долго вам прослужит электродвигатель нужно не в ходе его эксплуатации, а намного раньше. Правильный выбор машины с учетом условий и регулярности ее применения — верный залог того, что она будет работать долго, надежно и эффективно. При этом, конечно, не стоит забывать о соблюдении рекомендаций по эксплуатации, грамотном монтаже и профессиональном обслуживании машины. Именно эти параметры будут определяющими в продолжительности ее жизни.

Теперь рассмотрим каждый из них подробнее и дадим еще несколько советов, на что стоит обратить внимание при эксплуатации электродвигателя, чтобы срок его службы был максимально долгим.

1. Покупайте правильный электродвигатель

Чтобы не приобрести очередную «головную боль» (в виде электродвигателя) на свой объект, посоветуйтесь со своими механиками. Именно эти люди будут сутки напролет обхаживать и заботиться о двигателях, чтобы машина не подвела в самый неподходящий момент. Они профессионалы и подберут то, что необходимо, а не то, что дешево или выгодно. Они умеют правильно, и главное — технически грамотно:

  • определить производителя и серию двигателя;
  • указать необходимую мощность и обороты;
  • уточнить вопрос по рабочему напряжению, способу монтажа, климатическому исполнению;
  • обратить внимание на значения КПД и cos φ;
  • указать дополнительные требования к машине.

В том случае, если вы живете по правилу — доверяй, но поверяй — можете совершенно бесплатно получить необходимые рекомендации у наших специалистов.

2. Установите прямую связь со специалистами завода-изготовителя

Это позволит вам напрямую с разработчиками электродвигателя технически грамотно и быстро решать все вопросы, связанные с обслуживанием и ремонтом. Предоставляя обратную связь производителю, вы, хотите того сами или нет, делаете неоценимый вклад в повышения уровня качества производимой производителями продукции.

3. Соблюдайте технику безопасности при проведении монтажных работ и советы по эксплуатации

Установка электродвигателя производится, как правило, с помощью кранов или ручных лебедок, а также талей и других устройств, расположенных над местом его эксплуатации. Обязательно проверяйте возможности их нагрузки!

Также не забывайте, что центровка электродвигателей с технологической машиной, проверка воздушных зазоров, замена смазки в подшипниках, подгонка и регулировка щеток у электродвигателя с фазным ротором, проверка сопротивления изоляции обмоток должны происходить только при отключенном рубильнике, вынутых плавких вставках предохранителей на питающей линии с вывешиванием запрещающего плаката на рубильнике.

При монтаже необходимо обратить особое внимание на состояние электродвигателя и не допускать использования инструмента, имеющего дефекты.

4. Своевременно выполняйте регламентные работы

В первую очередь, проводите регулярный внешний осмотр во время работы двигателя. Эта мера носит профилактический характер, но очень важна. Она позволит предупредить возникновение неисправностей и, как следствие, предотвратить сбой в работе. Во время проведения осмотра очищается поверхность электродвигателя, производится затяжка болтовых соединений и крепления заземлений.

Не менее важно проведение работ по контролю основных параметров электрической машины. Сюда входят замер токов и проверка их на соответствие заводским параметрам. Перегрузка двигателя значительно сокращает срок его службы. Также необходимо убедиться в отсутствии посторонних шумов и вибрации, в том, что двигатель смазан, а его температура не превышает допустимые нормы (подробнее п. 7, 10).

5. Выбирайте энергоэффективные двигатели

Основным показателем энергоэффективности электродвигателя является его коэффициент полезного действия (далее КПД), который рассчитывается по формуле:

где Р2 — полезная мощность на валу электродвигателя,

Р1 — активная мощность, потребляемая электродвигателем из сети,

ΔP — суммарные потери, возникающие в электродвигателе.

Как мы видим, чем выше КПД (и соответственно ниже потери), тем меньше энергии потребляет электродвигатель из сети для создания полезной мощности.

Согласно эмпирическому закону срок службы изоляции уменьшается в два раза при увеличении температуры на 100 °C. Таким образом, срок службы двигателя с повышенной энергоэффективностью несколько больше, так как потери и нагрев меньше.

6. Применяйте электродвигатели с преобразователями частоты

Преобразователи частоты позволяют регулировать скорость вращения электродвигателя за счет изменения входной частоты. Это позволяет сэкономить как минимум 30% электроэнергии по сравнению с традиционными способами управления двигателями. Например, если снизить рабочую частоту всего на 20% (с 50 до 40 Гц), то потребление электроэнергии уменьшится вдвое!

Помимо энергосбережения преобразователи частоты увеличивают срок службы электродвигателя, повышают надежность всей системы, не требуют технического обслуживания.

7. Контролируйте температуру двигателя

Нормативный срок службы электродвигателя определяется допустимой температурой нагрева его изоляции. В современных двигателях применяется несколько классов изоляции, допустимая температура нагрева которых составляет:

  • Класс В — 130 °C,
  • Класс F — 155 °C,
  • Класс H — 180 °C.

Превышение допустимой температуры ведет к преждевременному разрушению изоляции и существенному сокращению срока его службы.

8. Следите за обмоткой электродвигателя

Здесь есть два варианта развития событий:

  • обрыв обмотки в треугольнике,
  • обрыв обмотки в звезде.

Рассмотрим каждый из них.

Обрыв обмотки в «треугольнике». Из практики известно, что оборванная обмотка никак не мешает нормальной работе электродвигателя. Оставшиеся две обмотки берут на себя всю мощность через подсоединение к сети по топологии «открытый треугольник». В результате двигатель набирает обороты, держит нагрузку, но происходит чрезмерный нагрев двух подключенных фаз. При относительно долгой эксплуатации асинхронного силового агрегата под нагрузкой на валу в таком неверном режиме включения происходит неминуемое выгорание задействованных обмоток статора.

Обрыв обмотки в «звезде». Обрыв обмотки статора в трехфазном электродвигателе, включенном в сеть по топологии «звезда», приводит к тому, что машина отказывается запускаться, если ее остановить. Двигатель греется, издает неприятный гул, вибрирует ротором, но не запускается. Обрыв обмотки приводит к тому, что не образуется вращающееся магнитное поле. Безусловно, двигатель можно запустить, но для этого необходимо предварительно раскрутить вал ротора. Естественно, возрастает электропотребление, шум, а также общий износ двигателя.

Единственно верное решение проблемы обрыва обмотки — это нахождение дефектной обмотки и ее перемотка. Любая скрутка, спайка внутри обмотки неприемлема. Лучше и надежнее перемотать всю обмотку, сохраняя число витков, а также сечение обмоточной проволоки.

Читать еще:  Громко работает двигатель на синтетики

9. Особое внимание — аварийный режим!

Многолетний опыт эксплуатации электродвигателей показал, что большинство существующих защит не обеспечивают безаварийную работу электродвигателя. Например, тепловые реле рассчитывают на длительную перегрузку 25-30% от номинальной. Но чаще всего они срабатывают при обрыве одной фазы при нагрузке 60% от номинальной. При меньшей нагрузке реле не срабатывает, электродвигатель продолжает работать на двух фазах и выходит из строя в результате перегрева изоляции обмоток.

Правильный выбор защитного устройства — это важный фактор в обеспечении безопасной эксплуатации электродвигателя. Приборы защиты электродвигателя от аварийных режимов можно разделить на несколько видов:

  • тепловые защитные устройства — тепловые реле, расцепители;
  • защитные устройства от сверхтоков — плавкие предохранители, автоматы;
  • термочувствительные защитные устройства — термисторы, термостаты;
  • защита от аварий в электросети — реле напряжения и контроля фаз, мониторы сети;
  • приборы МТЗ (максимальной токовой защиты), электронные токовые реле;
  • комбинированные устройства защиты.

При выборе релейной защиты проконсультируйтесь со специалистом.

10. Обращайте внимание на вибрацию и шум

Обращайте самое пристальное внимание на такие параметры электрической машины как вибрация и шум. Если они не в пределах нормы, то свидетельствуют о механической неисправности. Очень важно вовремя уловить данные изменения в работе машины, определить причины возникновения, и конечно же устранить их.

Если самостоятельно решить данный вопрос не получается, рекомендуем обращаться напрямую к производителям, обладающим необходимым оборудованием, и специалистам, регулярно решающими подобного рода задачи. Это сэкономит вам время и деньги!

Как определить мощность электродвигателя без бирки

Содержание

  1. Практические измерения
  2. Определение по таблицам
  3. Вычисление по количеству оборотов в минуту
  4. Определение по габаритам
  5. Определение по мощности, выдаваемой двигателем
  6. Для чего необходимо знать мощность двигателя

Если техническая документация к двигателю утеряна, а надписи на корпусе стерлись или не читаемы, возникает вопрос: как определить мощность электродвигателя без бирки? Существуют несколько методов, о которых мы вам расскажем, и вам останется выбрать из них наиболее удобный в вашем случае.

Практические измерения

Самый доступный способ – проверка показаний бытового счетчика электроэнергии. Сначала следует отключить абсолютно все бытовые приборы и выключить свет во всех помещениях, поскольку даже горящая лампочка на 40Вт будет искажать показания. Проследите, чтобы счетчик не крутился или индикатор не мигал (в зависимости от его модели). Вам повезло, если у вас счетчик «Меркурий» — он показывает величину нагрузки в кВт, поэтому от вас потребуется только включить двигатель на 5 минут на полную мощность и проверить показания.

Индукционные счетчики ведут учет в кВт/ч. Запишите показания до включения мотора, дайте ему поработать ровно 10 минут (лучше воспользоваться секундомером). Снимите новые показания счетчика и путем вычитания узнайте разницу. Умножьте эту цифру на 6. Полученный результат отображает мощность двигателя в кВт.

Если двигатель маломощный, вычислить параметры будет несколько сложнее. Выясните, сколько оборотов (или импульсов) равно 1кВт/ч – информацию вы найдете на счетчике. Допустим, это 1600 оборотов (или вспышек индикатора). Если при работающем двигателе счетчик делает 20 оборотов в минуту, умножьте эту цифру на 60 (количество минут в часу). Получается 1200 оборотов в час. Разделите 1600 на 1200 (1.3) – это и есть мощность двигателя. Результат тем точнее, чем дольше вы измеряете показания, но небольшая погрешность все равно присутствует.

Определение по таблицам

Как узнать мощность электродвигателя по диаметру вала и другим показателям? В интернете нетрудно найти технические таблицы, с помощью которых можно узнать тип мотора и, соответственно, его мощность. Вам потребуется снять следующие параметры:

  • диаметр вала;
  • частота его вращения или число полюсов;
  • крепежные размеры;
  • диаметр фланца (если двигатель фланцевый);
  • высота до центра вала;
  • длина мотора (без выступающей части вала);
  • расстояние до оси.

Далее – вопрос времени и внимательности. Согласитесь, надежнее измерить детали и узнать точный, без погрешностей результат. В сети есть параметры абсолютно всех, даже очень старых моторов.

Вычисление по количеству оборотов в минуту

Определите визуально количество обмоток статора. Используйте тестер или миллиамперметр для того чтобы узнать число полюсов – при этом не требуется разбирать мотор. Подключите прибор к одной из обмоток и равномерно вращайте вал. Количество отклонений стрелки – это число полюсов. Учтите, что частота вращения вала при данном методе вычисления несколько ниже полученного результата.

Определение по габаритам

Еще один способ – проведение замеров и вычислений. Многие из тех, кто интересуется, как узнать мощность трехфазного двигателя, предпочитают именно его. Вам понадобятся следующие данные:

  • Диаметр сердечника в сантиметрах (D). Он измеряется по внутренней части статора. Также необходима длина сердечника с учетом отверстий вентиляции.
  • Частота валового вращения (n) и частота сети (f).

Через них вычислите показатель полюсного деления. D умножьте на n и на число Пи – назовем это показание А. 120 умножьте на f – это В. Разделите А на В.

Как видите, чтобы подсчитать значение, достаточно вспомнить школьный курс математики.

Определение по мощности, выдаваемой двигателем

Здесь опять придется вооружиться калькулятором. Узнайте:

  • число оборотов вала в секунду (А);
  • показатель тяглового усилия мотора (В);
  • радиус вала (С) – это можно сделать с помощью штангенциркуля.

Определение мощности электродвигателя в Вт осуществляется по следующей формуле: Ах6.28хВхС.

Для чего необходимо знать мощность двигателя

Из всех технических характеристик электродвигателя (КПД, номинальный рабочий ток, частота вращения и т.д.) самая значимая – мощность. Зная главные данные, вы сможете:

  • Подобрать подходящие по номиналам тепловое реле и автомат.
  • Определить пропускную способность и сечение электрических кабелей для подключения агрегата.
  • Эксплуатировать двигатель согласно его параметрам, не допуская перегрузок.

Мы описали, как замерить мощность электродвигателя разными способами. Используйте тот, который в вашем случае будет оптимальным. Применяя любой из методов, вы подберете агрегат, который будет лучшим образом отвечать вашим требованиям. Но самый эффективный вариант, экономящий ваше время и избавляющий вас от необходимости искать информацию и проводить замеры и расчеты – это сохранить технический паспорт в надежном месте и следить за тем, чтобы шильдик с данными не потерялся.

Читать еще:  Экономичные обороты для дизельного двигателя

Определение частоты вращения асинхронных двигателей без датчика оборотов

Внедрение: 2018 г.

Данная статья является продолжением прежней статьи по опубликованным материалам А.В. Скляра, но уже по результатам диссертационных исследований [1], где автор применил оригинальную систему измерений с использованием модуля АЦП E14‑140‑M.

Объектом исследования диссертационной работы является асинхронный двигатель с короткозамкнутым ротором. Предметом исследования являются способы и алгоритмы бездатчикового определения частоты вращения ротора асинхронных двигателей. Целью работы является повышение точности и технологичности определения частоты вращения асинхронных двигателей путем применения сигнатурного способа с использованием алгоритма на основе комбинации спектрального и корреляционного методов анализа.

Система измерений, реализованная на основе модуля АЦП E14‑140‑M, содержит плату, разработанную автором, содержащую аналоговые фильтры и согласующие усилители. Внешний вид устройства показан на рисунке 1.

Рисунок 1. Устройство бездатчикового определения частоты вращения: 1 – разъем для подключения датчика тока; 2 – измерительный трансформатор напряжения; 3 – клеммы для подключения исследуемого напряжения; 4 – аналого-цифровой преобразователь; 5 – разъем питания, 6 – аналоговые фильтры.

На рисунке 2 показаны составные части разработанной автором программы и потоки информации между описываемыми блоками. В структуре программы можно выделить блок, отвечающий за ввод-вывод информации: работу с АЦП, обмен командами через интерфейс оператора, хранение БД двигателей и т. д.; блок математической обработки, включающий быстрое преобразование Фурье, работу с комплексными числами, функции обработки спектра, метод корреляционных функций; блок поиска зубцовых гармоник и вычисления скорости вращения вала, который выделяет зубцовые гармоники и на основе этой информации определяет частоту вращения ротора асинхронного двигателя.

Рисунок 2. Структура разработанной программы.

Главное окно программы показано на рисунке 3. При запуске отображаются параметры подключенного АЦП и настройки записи сигналов тока и напряжения. В этом окне оператор выбирает тип двигателя.

Рисунок 3. Главное окно программы.

Основным преимуществом применения сигнатурного способа, использующего поиск зубцовых гармоник статорного тока, является то, что не требуется дополнительно производить какие-либо измерения тока. Обычно системы спектр-токового диагностирования используют спектры тока для поиска частотных компонент дефектов двигателя, при этом используется высокое разрешение по частоте, что облегчает процедуру выделения зубцовых гармоник из спектра сигнала тока.

Предложенный способ определения частоты вращения ротора асинхронных двигателей был успешно применен в компании ООО «Транспроект-автоматика» при производстве испытательных станций асинхронных вспомогательных машин (акт внедрения приведен в диссертации).

На рисунке 4 изображена фотография рабочего процесса проверки двигателя комплексом спектр-токового диагностирования, использующего разработанное автором устройство бездатчикового определения частоты вращения ротора асинхронных двигателей.

Рисунок 4. Использование разработанного устройства при проведении спектр-токового диагностирования двигателя АИР355M4.

Внедрение результатов диссертационной работы позволило повысить надежность испытательной станции за счет сокращения количества соединительных проводов, элементов конструкции крепления датчика оборотов и отсутствия самого датчика оборотов. Положительным эффектом можно также назвать повышение технологичности проведения испытаний – время подготовки комплекса спектр-токового диагностирования сократилось на семь минут за счет отсутствия необходимости настройки и подключения датчика оборотов, как следствие сократилось время испытания двигателя.

Источник:
Скляр А.В. Совершенствование методики и устройства определения частоты вращения асинхронных двигателей на основе частотного анализа тока статора: диссертация на соискание ученой степени кандидата технических наук. – Омск. – 2018. – 196 с.

Управление скоростью вращения однофазных двигателей

Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки — рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.

Регулировать скорость вращения таких двигателей необходимо, например, для:

  • изменения расхода воздуха в системе вентиляции
  • регулирования производительности насосов
  • изменения скорости движущихся деталей, например в станках, конвеерах

В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

Способы регулирования

Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

Рассмотрим способы с изменением электрических параметров:

  • изменение напряжения питания двигателя
  • изменение частоты питающего напряжения

Регулирование напряжением

Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя — разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

n1 скорость вращения магнитного поля

n2 — скорость вращения ротора

При этом обязательно выделяется энергия скольжения — из-за чего сильнее нагреваются обмотки двигателя.

Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз — то есть, снижением питающего напряжения.

При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

На практике для этого применяют различные схемы регуляторов.

Автотрансформаторное регулирование напряжения

Автотрансформатор — это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

Преимущества данной схемы:

      • неискажённая форма выходного напряжения (чистая синусоида)
      • хорошая перегрузочная способность трансформатора

Недостатки:

      • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
      • все недостатки присущие регулировке напряжением
Читать еще:  Двигатель 1kz на каких машинах

Тиристорный регулятор оборотов двигателя

В данной схеме используются ключи — два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения.

Таким образом изменяется среднеквадратичное значение напряжения.

Данная схема довольно широко используется для регулирования активной нагрузки — ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

Ещё один способ регулирования — пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно — шумы и рывки при работе.

Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

  • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
  • добавляют на выходе конденсатор для корректировки формы волны напряжения
  • ограничивают минимальную мощность регулирования напряжения — для гарантированного старта двигателя
  • используют тиристоры с током в несколько раз превышающим ток электромотора

Достоинства тиристорных регуляторов:

      • низкая стоимость
      • малая масса и размеры

Недостатки:

      • можно использовать для двигателей небольшой мощности
      • при работе возможен шум, треск, рывки двигателя
      • при использовании симисторов на двигатель попадает постоянное напряжение
      • все недостатки регулирования напряжением

Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.

Транзисторный регулятор напряжения

Как называет его сам производитель — электронный автотрансформатор или ШИМ-регулятор.

Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы — полевые или биполярные с изолированным затвором (IGBT).

Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

Выходной каскад такой же как и у частотного преобразователя, только для одной фазы — диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.

Плюсы электронного автотрансформатора:

        • Небольшие габариты и масса прибора
        • Невысокая стоимость
        • Чистая, неискажённая форма выходного тока
        • Отсутствует гул на низких оборотах
        • Управление сигналом 0-10 Вольт

Слабые стороны:

        • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
        • Все недостатки регулировки напряжением

Частотное регулирование

Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина — не было дешёвых силовых высоковольтных транзисторов и модулей.

Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие — массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

На данный момент частотное преобразование — основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

Однофазные двигатели могут управляться:

  • специализированными однофазными ПЧ
  • трёхфазными ПЧ с исключением конденсатора

Преобразователи для однофазных двигателей

В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей — INVERTEK DRIVES.

Это модель Optidrive E2

Для стабильного запуска и работы двигателя используются специальные алгоритмы.

При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

f — частота тока

С — ёмкость конденсатора

В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя — в некоторых моделях это сделать довольно сложно.

Преимущества специализированного частотного преобразователя:

        • интеллектуальное управление двигателем
        • стабильно устойчивая работа двигателя
        • огромные возможности современных ПЧ:
          • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
          • многочисленные защиты (двигателя и самого прибора)
          • входы для датчиков (цифровые и аналоговые)
          • различные выходы
          • коммуникационный интерфейс (для управления, мониторинга)
          • предустановленные скорости
          • ПИД-регулятор

Минусы использования однофазного ПЧ:

        • ограниченное управление частотой
        • высокая стоимость

Использование ЧП для трёхфазных двигателей

Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:

Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:

Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого — магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.

В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.

При работе без конденсатора это приведёт к:

  • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
  • разному току в обмотках

Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

Преимущества:

          • более низкая стоимость по сравнению со специализированными ПЧ
          • огромный выбор по мощности и производителям
          • более широкий диапазон регулирования частоты
          • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

Недостатки метода:

          • необходимость предварительного подбора ПЧ и двигателя для совместной работы
          • пульсирующий и пониженный момент
          • повышенный нагрев
          • отсутствие гарантии при выходе из строя, т.к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector