Arskama.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Автоматические характеристики тяговых двигателей

Устройство и принцип работы электродвигателя

Электродвигатель – устройство для преобразования электроэнергии во вращательное движение вращающейся части электрической машины. Преобразование энергии в двигателях происходит за счет взаимодействия магнитных полей обмоток статора и ротора. Эти электрические машины широко используются во всех отраслях промышленности, в качестве привода электротранспорта и инструментов, в системах автоматизации, бытовой техники и так далее.

Существует множество видов электродвигателей, различающихся по принципу действия, конструкции, исполнению и другим признакам. Рассмотрим основные типы этих электрических машин.

По принципу действия различают магнитоэлектрические и гистерезисные электрические машины. Несмотря на простоту конструкции, высокий пусковой момент, последние не получили широкого распространения. Эти электродвигатели имеют высокую цену, низкий коэффициент мощности, ограничивающие их применение. Подавляющее большинство выпускаемых электродвигателей – магнитоэлектрические.

По типу напряжения питания различают:

  • Электродвигатели постоянного тока.
  • Двигатели переменного тока.
  • Универсальные электрические машины.

По конструкции различают электродвигатели с горизонтально и вертикально расположенным валом. Кроме того, электрические машины классифицируют по назначению, климатическому исполнению, степени защиты от попадания влаги и посторонних предметов, мощности и другим параметрам.

Классы электродвигателей:

  • Постоянного тока
    • Бесщеточные ЕС (электронно-коммутируемые)
    • Со щетками
      • С последовательным возбуждением
      • С параллельным возбуждением
      • Со смешанным возбуждением
      • С постоянными магнитами
  • Переменного тока
    • Универсальные
    • Синхронные
    • Индукционные
      • Однофазные
      • Трехфазные

Таблица классификации электронных двигателей:

Электродвигатели постоянного тока

Двигатели постоянного тока широко применяются в качестве привода электротранспорта, промышленного оборудования, а также микропривода исполнительных механизмов. Такие электрические машины обладают следующими преимуществами:

  • Возможность регулировки частоты вращения путем изменения напряжения в обмотке возбуждения. При этом крутящий момент на валу ДПТ (двигатели постоянного тока) остается неизменным.
  • Высокий к.п.д. (коэффициент полезного действия) у машин постоянного тока несколько выше, чем у самых распространенных асинхронных двигателей переменного тока. При неполной нагрузке на валу к.п.д. ДПТ выше на 10-15%.
  • Возможность изготовления ДПТ небольших габаритов. Практически все используемые микроприводы рассчитаны на постоянный ток.
  • Простота схем управления. Для пуска, реверса и регулирования скорости и момента не требуется сложного электронного оборудования и большого количества аппаратов для коммутации.
  • Возможность работы в режиме генератора. Электродвигатели такого типа можно использовать в качестве источников постоянного тока.
  • Высокий пусковой момент. ДПТ используют в составе электроприводов кранов, тяговых и грузоподъемных механизмов, где требуется запуск под значительной нагрузкой.

ДПТ различают по способу возбуждения, они бывают:

  • С постоянными магнитами. Такие двигатели отличаются малыми габаритами. Основная область их применения – микроприводы.
  • С электромагнитным возбуждением.

Электрические машины с электромагнитами такого типа получили самое широкое распространение. Их классифицируют по способу подключения обмотки статора:

  • Двигатели с параллельным возбуждением. Обмотки якоря и статора в электрической машине такого типа соединены параллельно. Такие электрические машины не требуют дополнительного источника питания для обмотки возбуждения, скорость вращения ротора практически не зависит от нагрузки. Их используют для привода металлорежущих станков и другого оборудования.
  • Электродвигатели с последовательно включенной обмоткой статора. ДПТ этого типа имеют значительный пусковой момент. Их применяют в качестве привода электротранспорта и промышленных установок с необходимостью пуска под нагрузкой.
  • Двигатели с независимым возбуждением. Для питания обмотки статора таких электромашин используется независимый источник постоянного тока. ДПТ такого типа отличаются широким диапазоном регулирования скоростей.
  • Электрические машины со смешанным возбуждением. Электромагнит возбуждения в таких двигателях поделен на 2 части. Одна из них включена параллельно, вторая последовательно обмотке якоря. Электрические машины такого типа используются в механизмах и оборудовании, где необходим высокий пусковой момент, а также переменная и постоянная скорость при переменном моменте.

Электродвигатели переменного тока

Электрические машины такого типа широко используют для приводов всех типов технологического оборудования, электроинструментов, автоматических регуляторов. По наличию разности между скоростью вращения магнитного поля статора и частотой вращения ротора различают синхронные и асинхронные двигатели.

Асинхронные электродвигатели

Благодаря дешевизне и простоте конструкции электрические машины такого типа получили самое широкое распространение. Их принципиальное отличие – наличие так называемого скольжения. Это разность между частотой вращения магнитного поля неподвижной части электрической машины и скоростью вращение ротора. Напряжение на вращающейся части индуцируется за счет переменного магнитного поля обмоток статора двигателя. Вращение вызывает взаимодействие поля электромагнитов неподвижной части и магнитного поля ротора, возникающего под влиянием наведенных в нем вихревых токов. По особенностям обмоток статора выделяют:

  • Однофазные двигатели переменного тока. Двигатели такого типа требуют для пуска наличия внешнего фазосдвигающего элемента. Это может быть пусковой конденсатор или индуктивное устройство. Область применения однофазных двигателей – маломощные приводы.
  • Двухфазные электрические машины. Такие двигатели имеют 2 обмотки со смещенными относительно друг друга фазами. Их также используют для бытовых устройств и оборудования, имеющего небольшую мощность.
  • Трех- и многофазные электродвигатели. Наиболее распространенный тип асинхронных машин. Электрические двигатели такого типа имеют от 3-х и более обмоток статора, сдвинутых по фазе на определенный угол.

По конструкции ротора асинхронные электрические машины делят на двигатели с короткозамкнутым и фазным ротором.

Обмотка ротора электрических машин первого типа представляет собой несколько неизолированных стержней, выполненных из сплавов меди или алюминия, замкнутых с двух сторон кольцами (конструкция “беличья клетка”). Асинхронные двигатели такого типа обладают следующими преимуществами:

  • Достаточно простая схема пуска. Такие электрические машины можно подключать непосредственно к электрической сети через аппараты коммутации.
  • Допустимость кратковременных перегрузок.
  • Возможность изготавливать электрические машины высокой мощности. Двигатель такого типа не содержит скользящих контактов, препятствующих наращиванию мощности.
  • Относительно простое ТО и ремонт. Асинхронные электромашины имеют несложную конструкцию.
  • Невысокая цена. Двигатели асинхронного типа стоят дешевле синхронных машин и ДПТ.

Электрические машины с короткозамкнутым ротором имеют свои недостатки:

  • Предельная скорость вращения составляет не более 3000 об/мин при входе в синхронный режим.
  • Технически сложная реализация регулирования частоты вращения.
  • Высокие пусковые токи при прямом запуске.

Электродвигатели с фазным ротором частично лишены недостатков, присущих машинам с ротором конструкции “беличья клетка”. Вращающаяся часть электрической машины такого типа имеет обмотки, соединенные в схему “звезда”. Напряжение подводится к обмотке через 3 контактных кольца, закрепленных на роторе и изолированных от него.

Читать еще:  В каком году отменили номера двигателей

Такие электродвигатели обладают следующими достоинствами:

  • Возможность ограничивать пусковые токи при помощи резистора, включенного в цепь электромагнитов ротора.
  • Больший, чем у электромашин с короткозамкнутым ротором, пусковой момент.
  • Возможность регулировки скорости.

Недостатками таких двигателей являются относительно большие габариты и масса, высокая цена, более сложный ремонт и сервисное обслуживание.

Синхронные двигатели переменного тока

Как и в асинхронных электродвигателях, вращение ротора в синхронных машинах достигается взаимодействием полей ротора и статора. Скорость вращения ротора таких электрических машин равна частоте магнитного поля, создаваемого обмотками статора.

Обмотка неподвижной части двигателя рассчитана на питание от трехфазного напряжения. К электромагнитам ротора подключается постоянное напряжение. Различают явнополюсные и неявнополюсные обмотки. В синхронных двигателях малой мощности используют постоянные магниты.

Запуск и разгон синхронной машины осуществляется в асинхронном режиме. Для этого на роторе двигателя имеется обмотка конструкции “беличья клетка”. Постоянное напряжение подается на электромагниты только после разгона до номинальной частоты асинхронного режима. Синхронные двигатели имеют следующие особенности:

  • Постоянная скорость вращения при переменной нагрузке.
  • Высокий к.п.д. и коэффициент мощности.
  • Небольшая реактивная составляющая.
  • Допустимость перегрузки.

К недостаткам синхронных электродвигателей относятся:

  • Высокая цена, относительно сложная конструкция.
  • Сложный пуск.
  • Необходимость в источнике постоянного напряжения.
  • Сложность регулировки скорости вращения и момента на валу.

Все недостатки электрических машин переменного тока можно исправить установкой устройства плавного пуска или частотного преобразователя. Обоснование выбора того или иного устройства обусловлено экономической целесообразностью и требуемыми характеристиками электропривода.

Универсальные двигатели

В отдельную группу выделяют универсальные электродвигатели, которые могут работать от сети переменного тока и от источников постоянного напряжения. Они используются в электроинструментах, бытовой технике, а также других маломощных устройствах. Конструкция такой электрической машины принципиально не отличатся от двигателя постоянного тока. Главное отличие – конструкция магнитной системы и обмоток ротора. Магнитная система состоит из изолированных друг от друга секций для снижения магнитных потерь. Обмотка ротора такой машины поделена на 2 части. При питании от переменного тока напряжение подается только на ее половину. Это делается в целях снижения радиопомех, улучшения условий коммутации.

К преимуществам таких машин относятся:

  • Высокая скорость вращения. Универсальные электродвигатели развивают скорость до 10 000 об/мин и более.
  • Питание от переменного и постоянного напряжения. Двигатели такого типа широко применяют для электроинструментов, имеющих дополнительные аккумуляторные батареи.
  • Возможность регулирования скорости без использования дополнительных устройств.

Однако, такие электромашины имеют свои недостатки:

  • Ограниченная мощность.
  • Необходимость обслуживания коллекторного узла.
  • Тяжелые условия коммутации при питании от переменного напряжения из-за наличия трансформаторной связи между обмотками.
  • Электромагнитные помехи при подключении к сети переменного тока.

Каждый тип двигателя имеет свои достоинства и недостатки. Выбор электрической машины для привода любого оборудования делается исходя из условий эксплуатации, требуемой частоты вращения, экономической целесообразности, типа нагрузки и других параметров.

Электропоезда переменного тока | Общие сведения

Описание электропоездов и электровозов, расписание поездов, фотографии

Тяговые двигатели служат для преобразования электрической энергии в механическую, которая затрачивается на приведение во вращение колесных пар моторных вагонов электропоездов и преодоление всех сил сопротивления движению электропоезда.

Особые условия работы тяговых двигателей требуют, чтобы они без влияния на свои механические и электрические данные могли переносить динамические воздействия от пути. Поэтому огромное значение имеет способ подвески тягового двигателя на тележке моторного вагона. На электропоездах серии всех модификаций ЭР9 применена независимая опорно-рамная подвеска, при которой тяговый двигатель жестко укреплен на раме тележки вагона, а передача вращающего момента на ось колесной пары осуществляется через муфту.

В связи с тем что тяговый двигатель расположен под вагоном, он подвержен различным климатическим воздействиям, что усложняется еще и тем, что на электропоездах применяют тяговые двигатели с самовентиляцией с забором охлаждающего воздуха через специальные каналы с крыши вагона. Поэтому тяговые двигатели находятся в тяжелых условиях влияния внешней среды и особенно зимой. Тяговые двигатели электропоездов находятся также в ограниченных размерах габарита моторной тележки, что усложняет уход в эксплуатации за их щеткодержателями и коллекторами, в то время как для надежной и безаварийной работы тяговых двигателей необходим тщательный уход за ними в эксплуатации.

Рабочие режимы тяговых двигателей пригородных электропоездов в связи с частыми и быстрыми изменениями нагрузки, резкими изменениями скорости вращения, большими колебаниями напряжения на коллекторе существенно отличаются от режимов работы стационарных электрических машин. Резкие изменения скорости вращения могут приводить к механическим повреждениям бандажей якоря тягового двигателя, а также соединительной муфты. Поэтому для надежной работы тяговые двигатели должны изготавливаться из высококачественных материалов.

Надежность работы тяговых двигателей зависит также от класса изоляции применяемых в них диэлектрических материалов. В тяговых двигателях электропоездов обычно применяется изоляция класса В, допускающая температуру перегрева для якоря 120 °С, для обмоток полюсов — 130 °С. В настоящее время для изоляции тяговых двигателей начали применять кремнийорганические материалы, позволяющие значительно повысить перегревы обмоток тяговых двигателей.

Основные параметры тяговых двигателей. На электропоездах переменного тока применяются тяговые двигатели пульсирующего тока, которые, как и двигатели постоянного тока, характеризуются тремя значениями мощности:

продолжительной (длительной) мощностью — мощностью длительного режима;

часовой мощностью — мощностью часового режима; максимальной мощностью.

Продолжительной (длительной) мощностью называется наибольшая развиваемая на валу тягового двигателя мощность, при которой электрическая машина на испытательном стенде при нормально действующей вентиляции, закрытых коллекторных и смотровых люках и номинальном напряжении на зажимах может работать длительно. При этом превышение температуры частей машины не должно превышать установленных для этого режима норм.

Часовой мощностью называется наибольшая развиваемая мощность на валу тягового двигателя, при которой тяговый двигатель может работать на испытательном стенде при нормально действующей вентиляции и закрытых смотровых люках в течение 1 ч. При этом режиме допустимое превышение температуры частей машины с классом изоляции В над температурой окружающего воздуха не должно быть больше для обмотки якора 120 °С, а для класса Н— 160 °С.

Под максимальной мощностью двигателя следует понимать мощность, которую он может развивать в течение короткого промежутка времени без механических деформаций деталей и появления недопустимого искрения щеток.

Читать еще:  Характеристика двигателя кайрон бензин

Длительным, часовым и максимальным током двигателя называется ток, соответствующий длительной, часовой и максимальной его мощности.

Номинальным напряжением тяговых двигателей считается напряжение, соответствующее номинальному режиму работы, при условиях, для которых они предназначены заводом-изготовителем. Но рабочее напряжение может быть больше и меньше номинального. Отечественные ГОСТы допускают повышение напряжения в контактной сети у токоприемника на 25% выше номинального напряжения электродвигателей. Тяговые двигатели пульсирующего тока, питающиеся через тяговый трансформатор и выпрямительную установку вагона от напряжения контактного провода переменного тока, должны надежно работать при повышении напряжения в контактной сети на токоприемнике э. п. с. на 16% или понижении его на 24%.

Тяговые двигатели электропоездов переменного тока работают в условиях резко меняющихся режимов работы. Исходя из этого нельзя характеризовать работоспособность тяговых двигателей одним значением мощности. В тяговых двигателях, как и в других электрических машинах, в процессе преобразования электрической энергии в механическую происходит частичная потеря энергии в тепловую. Потери в. двигателях подразделяют на электрические потери в обмотках и щеточном механизме коллектора, механические потери, возникающие при трении в подшипниках, трении щеток и т. д., магнитные потери в стали якоря, обусловленные гистерезисом, добавочные потери в стали от искажения основного поля реакцией якоря и вихревых токов (рис. 58). Электрические потери сильно зависят от изменения нагрузки, а магнитные и механические — незначительно. Поэтому первые часто называют переменными потерями, а вторые — постоянными. Отсюда следует, что от соотношения постоянных и переменных потерь характер изменения к. п. д. при увеличении нагрузки будет различным, несмотря на одинаковое значение к. п. д. при номинальной нагрузке двигателей.

Для тяговых двигателей моторвагонного подвижного состава экономически более целесообразной является характеристика 2, так как частые пуски в пригородном движении при большом токе происходят при более высоком значении к. п. д., что дает значительное снижение пусковых потерь, а для тяговых двигателей электровозов—характеристика 1 (рис. 59).

Все современные тяговые двигатели, устанавливаемые на электропоездах переменного тока, имеют последовательное (сериесное) возбуждение, преимущество которого видно из характеристик, приведенных на рис. 60. При параллельной

работе тяговых двигателей с параллельным возбуждением расхождение в нагрузках, вызванное неизбежной разницей в свойствах материалов, применяемых при изготовлении, а также различными допусками на обработку и сборку отдельных узлов, оказывается значительно большим, чем в двигателях с последовательным возбуждением. Двигатель с последовательным возбуждением имеет так называемую мягкую характеристику. При увеличении нагрузки значительно увеличивается вращающий момент и уменьшается скорость, и наоборот, при снижении нагрузки уменьшается вращающий момент.

Тяговый двигатель с последовательным возбуждением значительно лучше и в конструктивном отношении. Размер его катушек значительно меньше, чем у двигателя с параллельным возбуждением, так как магнитное поле двигателя с параллельным возбуждением возрастает медленно, но при изменении нагрузки он имеет больший вращающий момент, чем двигатель с параллельным возбуждением. Однако тяговые двигатели последовательного возбуждения при одинаковой величине тока в зоне больших нагрузок имеют больший вращающий момент, чем двигатель с параллельным возбуждением при той же часовой мощности. В настоящее время часовая мощность принимается за основу для определения расчетных параметров тяговых электродвигателей.

Все величины, относящиеся к часовому режиму работы машины, носят название часовых величин и обозначаются индексами ч; величины, соответствующие длительному режиму, называются длительными и обозначаются индексом оо. Отношение длительной мощности рж к часовой рч характеризует интенсивность вентиляции двигателя и носит название коэффициента вентиляции:

Тяговый электродвигатель ЭД-118А

Наличие:Нет в наличии
Рейтинг:
  • Технические характеристики
  • Отзывы / Вопросы (0)

Поставляем тяговые электродвигатели ЭД-118А для тепловозов ТЭМ-2,ТЭМ-2М, ТЭМ-1, ТЭМ-7, ТЭМ-7, 2ТЭ116, М62, 2М62, 2ТЭ10, 2ТЭ10М, 3ТЭ10М, а акже других, в которых используется данный двигатель. Мы предлагаем двигатели после капитального ремонта (КР) со склада, а также осуществляем ремонт тяговых электродвигателей ЭД-118 А в объеме КР.

Описание ЭД-118А

Колесные пары локомотива приводятся в движение тяговыми электродвигателями типа ЭД-118А путем одноступенчатой передачи.

На тепловозе установлены шесть тяговых электродвигателей, по одному на каждую ось тележки. Тяговый электродвигатель представляет собой электрическую машину, которая работает на постоянном токе с последовательным возбуждением. На изображении схематически стрелками показано направление протекания тока, причем полюсы будут иметь обозначенную на схеме полярность, а якорь — определенное в обозначении направление вращения.

Технические характеристики тягового электродвигателя ЭД-118А

  • Мощность, кВт: 192
  • Марка щеток: ЭГ-61
  • Размеры щеток, мм: 2 (12,5 x 40 X60)
  • Нажатие на щетку, кгс: 4,2—4,8
  • Ток продолжительный, А: 595
  • Напряжение длительное, В: 356
  • Ток максимальный, А: 1000
  • Расход охлаждающего воздуха, м3/мин: 49
  • К. п. д.,%: 90,5
  • Масса, кг: 3100
  • Напряжение максимальное, В: 570
  • Частота вращения продолжительная, об/мин: 474
  • Частота вращения максимальная, об/мин: 2290

Если сравнивать со стандартными электрическими машинами постоянного тока электродвигатель ЭД-118А имеет конструктивные отличия, это связано с особенными условиями функционирования и установки его на тепловозе. Отличительными характеристиками являются:

  • моторно-осевые подшипники,
  • восьмигранная форма магнитопровода,
  • повышенное удельное давление щеток на коллектор.

Восьмигранная конструкция магнитопровода обуславливается ограниченными диаметром движущегося колеса тепловоза и шириной колии. Остов магнитопровода отлит из углеродистой стали, которая имеет небольшое содержанием углерода. Остов также служит каркасом для сборки всего электродвигателя ЭД-118А. В основании магнитопровода с одной стороны выполнены расточки под моторно-осевые вкладыши и места установки корпусов моторно-осевых подшипников. С другой стороны остова имеются «носики» (два выступа), которые служат для крепления тягового электродвигателя на тележке тепловоза. Посредине двух моторно-осевых подшипников расположена клица, в которой закреплены выводные кабели: два от якоря с маркировкой Я и Д# и два от катушек четырех главных полюсов с маркировкой К и КК- Для улучшения работы щеточно-коллекторного узла коллекторы тяговых электродвигателей выполнены из меди с присадкой либо кадмия, либо серебра. Это позволяет повысить термическую стойкость коллекторной меди и уменьшить износ коллектора в период эксплуатации.

Конструкция коллектора обычная, арочная. Конус коллектора и болты выполнены из легированной стали. Замок между коллекторной втулкой и нажимным конусом уплотнен для исключения попадания влаги внутрь коллектора. Коллекторная медь от корпуса изолирована при помощи миканитовых манжет. Коллекторные пластины изолированы друг от друга миканитовыми прокладками. В эксплуатации особенно внимательно необходимо следить за тем, чтобы миканитовые прокладки не выступали над рабочей поверхностью коллектора, а имели западание до 1,5 мм.

Щеткодержатели выполнены из литого латунного корпуса с пружинами часового типа. Нажатие пружины на щетку регулируется на снятом с тягового электродвигателя щеткодержателе. От корпуса щеткодержатели изолированы либо фарфоровым изолятором, либо изолятором из пластмассы.

Якорь тягового электродвигателя динамически балансируют грузами, размещаемыми в специальных канавках как со стороны коллектора, так. и со стороны, противоположной коллектору. Всякое нарушение балансировки приводит к повышенной вибрации, что может вызвать нарушение коммутации, повреждение изоляции и подшипников. Обмотка якоря в пазах удерживается клиньями, а в лобовых частях — бандажом из специальной однонаправленной стеклоленты. Бандаж из стеклолент более надежный, а случайная его размотка не приводит к таким тяжелым последствиям, как в случае бандажа из стальной проволоки.

Изоляция якоря выполнена на основе стеклрсодержащих материалов и эпоксидных смол. Якорь пропитан в лаке на эпоксидной основе и окрашен электроизоляционной эмалью, устойчивой в условиях высокого увлажнения и значительных колебаний температур. В целом изоляция якоря относится к классу Р и допускает перегрев до 135° С.

Главные полюсы состоят из шихтованных сердечников и катушек. Сердечники полюсов крепят к магнитопроводу с помощью болтов из легированной стали. Изоляция катушек главных полюсов класса Р, допускающая перегревы до 160° С. Добавочные полюсы выполнены из сплошного сердечника и катушек. К магнитопроводу сердечник крепится болтами из легированной стали. Изоляция катушек класса Р, допускающая перегрев до 160° С. Между сердечником полюса и магни-топроводом имеется прокладка из немагнитного материала. Каждый из полюсов двигателя, состоящий из сердечника с катушкой, представляет собой монолитный блок, что исключает перетирание изоляции.

С 1974 г. катушки имеют вибростойкие выводы. Межкатушечные соединения между главными полюсами выполнены гибкими наборными шинами, а между добавочными полюсами — специальным кабелем.

Основные данныеОбмотка
Главных полюсовДобавочный полюсовЯкоря
Число витков на полюс19174
Марка проводаМГММГМПЭТВСД
Ращмер голого провода, мм8х256х301,68х6,4
Число катушек4454
Чило параллельныхпроводов113

Надежность межкатушечных соединений в эксплуатации обеспечивается затяжкой болтовых соединений, причем нужно применять болты из стали 40Х. Подшипниковые узлы тягового электродвигателя выполнены на роликовых подшипниках. Смазка ЖРО, коротая применяется для смазывания двигателе подходит для любых климатических условий. Примечание: только не следует допускать смешение смазок.

Условия работы тяговых электрических двигателей на локомотиве можно назвать жесткими:

  • большой диапазон изменения температуры окружающей среды (от —50 до +40° С),
  • снег, дождь, пыль,
  • тряска и вибрация, особенно в условиях суровых зим, когда железнодорожное полотно промерзает.

Но самым пагубным для электродвигателя является эксплуатация его на стертых зубьях. При этом возникают такие нагрузки, которые вызывают преждевременный выход из строя не только роликовых подшипников, но и изоляции тяговых электродвигателей. Вывод: за состоянием тягового редуктора, моторно-осевых подшипников необходимо внимательно следить во время эксплуатации.

13. Электромеханические и тяговые характеристики двигателей постоянного тока. Сравнение характеристик тяговых двигателей различных систем возбуждения.

14. Влияние эксплуатационных факторов на работу тяговых двигателей эпс (расхождение характеристик и т.Д.).

Значительное влияние на работу двигателя оказывают нагрузки.

Условия эксплуатации таковы, что ток тягового двигателя ежеминутно меняется, при этом меняется и частота вращения. При этом и тот, и другой показатель могут как длительное время сохранять постоянство значений, так и резко изменяться (рис. 1.1).

Рис. 1.1. Пример формы тока и частоты вращения двигателя электровоза в процессе эксплуатации

У электропоездов токовые нагрузки более стабильны (рис. 1.2), и из-за сравнительно больших режимов выбега в целом двигатели электропоездов перегреваются меньше.

Рис. 1.2. Пример формы тока и частоты вращения двигателя тепловоза в процессе эксплуатации

Сложна работа двигателей и по напряжению. Изменение напряжения может заключаться в следующих пределах:

постоянный ток 2000…4000 В;

переменный ток 19000…29000 В.

Климатические условия также осложняют работу тяговых двигателей. Двигатели должны работать от +40 до –60 С. Такие резкие перепады температур могут привести к износу изоляции, её быстрому старению и т. д.

В настоящее время в основном используются три класса изоляции (В; F; Н) с различным превышением температуры. Говоря о воздействиях на тяговый двигатель, нельзя не остановиться на динамических воздействиях.

Электрические машины должны быть рассчитаны на работу в условиях вибрации и ударов, достигающих ускорения 150 м/с 2 . Результирующее ускорение для различных видов подвешивания составляет:  опорно-осевое – 212 м/с 2 ;  опорно-рамное – 30 м/с 2 .

Все эти удары сказываются и на креплении деталей двигателя, и на качестве токосъема.

Тяговые двигатели должны быть защищены от воздействий пыли и грязи. Исполнение тяговых двигателей занимает промежуточное положение между закрытым и защищенным исполнениями, они закрыты от соприкосновения с электрическими частями, но не защищены от влаги и пыли.

Однако, несмотря на сложные условия эксплуатации, в последние годы удалось повысить надежность тяговых двигателей и увеличить их межремонтные пробеги. Это получено за счет:  разработки и внедрения компенсационной обмотки;  повышения технологического уровня производства;  применения электротехнической стали, 2212 вместо стали 1312 (это позволило уменьшить массу);  использования стеклослюдинитовой ленты вместо миколенты, что позволило повысить электрическую прочность, влагостойкость, непроводность и механическую стойкость.

Увеличить показатели позволили следующие меры:

совершенствование механических элементов конструкции (подшипниковые щиты, межкатушечные соединения);  совершенствование изоляционных конструкций и материалов.

Рабочие характеристики двигателей. Рабочие характеристики двигателей делятся:

 на электромеханические;  электротяговые;  тяговые;  характеристики мощности.

Электромеханические характеристики – зависимость частоты вращения n, вращающего момента M и коэффициента полезного действия от тока.

Электротяговые характеристики – это зависимости скорости движения локомотива V, касательной силы тяги F и кпдна ободе движущих колес от тока.

Тяговой характеристикой называют зависимость силы тяги двигателя (или локомотива) от скорости движения локомотива.

Характеристикой мощности называют зависимости мощности от скорости движения локомотива.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector