Бесколлекторный двигатель что внутри
Отличия коллекторных и бесколлекторных двигателей
Каждый, кто впервые видел искрящие щетки внутри дрели или болгарки, наверняка задавался вопросом, чем же отличается такой двигатель от других двигателей, например от тех, что стоят в сверлильных станках. Двигатели, установленные в не очень мощных станках, обычно не искрят, и работают они не так шумно, как та же дрель, обладающая меньшей чем станок мощностью.
В чем же дело? Дело в том, что двигатель с щетками — это коллекторный двигатель, а двигатель без щеток — бесколлекторный. Для решения разных задач подойдет свой тип двигателя — где-то лучше подойдет коллекторный, а где-то можно установить только бесколлекторный.
Коллекторный двигатель
Двигатель коллекторный имеет, как правило, всего два провода питания, он прост в управлении, достаточно регулировать постоянное или переменное напряжение питания и обороты станут соответственно меняться. Управлять коллекторным двигателем можно даже при помощи нехитрого диммера. Главное достоинство коллекторного двигателя — высокие обороты (десятки тысяч в минуту) при высоком крутящем моменте.
Принцип работы коллекторного двигателя очень прост. По сути, ротор его представляет собой набор медных рамок в магнитопроводе, которые поочередно коммутируются к источнику питания на коллекторно-щеточном узле. Статор может быть как из постоянных магнитов, так и с обмоткой, питаемой от того же источника, что и ротор, или от отдельного источника, а иногда статор и ротор включены в единую последовательную цепь (как например двигатели стиральных машинок-автоматов).
На каждую из секций обмотки ротора, через коллекторно-щеточный узел, поочередно, в процессе вращения ротора, подается электрический ток, в результате ротор перемагничивается, приобретая четко выраженные северный и южный магнитные полюсы, благодаря которым и происходит вращение ротора внутри статора (полюсы ротора выталкиваются полюсами статора, затем ротор дальше перемагничивается и вновь выталкивается). Поскольку ротор каждый раз коммутируется к источнику питания очередной секцией, вращение не останавливается, пока на коллектор подается питание.
Основной недостаток коллекторного двигателя
Обороты коллекторного двигателя очень удобно регулировать, но когда они достаточно высоки, щетки дают о себе знать. Поскольку щетки все время плотно прилегают к коллектору, на высоких оборотах они быстро изнашиваются, со временем так или иначе засоряются, и в конце концов начинают искрить.
Износ щеток, и вообще коллекторно-щеточного узла, ведет к снижению эффективности коллекторного двигателя. Таким образом, сам коллекторно-щеточный узел — это и есть главный недостаток коллекторных двигателей. Сегодня от коллекторных двигателей стараются отказываться в пользу бесщеточных шаговых.
Бесколлекторный (бесщеточный) двигатель
У бесколлекторного двигателя нет ни коллектора, ни щеток. Простейший пример бесколлекторного двигателя — асинхронный трехфазный двигатель с ротором типа «беличья клетка». Еще один пример бесколлекторного двигателя — более современный — шаговый двигатель с магнитным ротором. Обмотки статора бесколлекторного двигателя сами перемагничиваются так, чтобы ротор все время разворачивался и непрерывно таким образом вращался.
Чаще всего современные бесколлекторные двигатели оснащаются датчиком положения ротора, по сигналам с которого работает регулятор скорости вращения двигателя. Сигнал с датчика положения ротора передается на процессор более 100 раз в секунду, в результате получается точное позиционирование ротора и высокий крутящий момент. Бывают, конечно, бесколлекторные двигатели и без датчика положения ротора, яркий пример — тот же асинхронный трехфазный мотор. Моторы без датчика положения стоят дешевле чем с датчиком.
Достоинства бесколлекторных двигателей
Поскольку ресурс подшипников ротора крайне велик, можно сказать, что в бесколлекторном двигателе практически отсутствуют изнашиваемые со временем детали, и он вообще не требует обслуживания в процессе эксплуатации. Здесь сведено к минимуму трение, отсутствует проблема перегрева коллектора, в целом надежность и эффективность бесколлекторных двигателей очень высоки.
Нет искрящих щеток, датчик положения ротора поможет сделать управление точным, — недостатков практически нет, одни достоинства. Разве что цена качественных шаговых двигателей выше чем у коллекторных (плюс драйвер), но это ничто по сравнению с регулярной заменой пружин, щеток и коллекторов у коллекторных двигателей.
«Бесколлекторные двигатели» ЛикБез и проектирование
Принцип работы электрического двигателя:
В основу работы любой электрической машины положено явление электромагнитной индукции. Поэтому если в магнитное поле поместить рамку с током, то на неё подействует сила Ампера, которая создаст вращательный момент. Рамка начнет поворачиваться и остановится в положении отсутствия момента, создаваемого силой Ампера.
Устройство электрического двигателя:
Любой электрический двигатель состоит из неподвижной части — Статора и подвижной части — Ротора. Для того чтобы началось вращение, нужно по очереди менять направление тока. Эту функцию и выполняет Коллектор (щетки).
Бесколлекторный двигатель — это двигатель ПОСТОЯННОГО ТОКА без коллектора, в котором функции коллектора выполняет электроника. (Если у двигателя три провода, это не значит что он работает от трехфазного переменного тока! А работает он от «порций» коротких импульсов постоянного тока, и не хочу вас шокировать, но те же двигатели которые используются в кулерах, тоже бесколлекторные, хоть они и имеют всего два провода питания постоянного тока)
Устройство бесколлекторного двигателя:
Inrunner (произносится как «инраннер»). Двигатель имеет расположенные по внутренней поверхности корпуса обмотки, и вращающийся внутри магнитный ротор.
Outrunner (произносится как «аутраннер»). Двигатель имеет неподвижные обмотки (внутри) вокруг которых вращается корпус с помещенным на его внутреннюю стенку постоянными магнитами.
Принцип работы:
Для того чтобы бесколлекторный двигатель начал вращаться, напряжение на обмотки двигателя надо подавать синхронно. Синхронизация может быть организованна с использованием внешних датчиков (оптические или датчики холла), так и на основе противоЭДС (бездатчиковый), которая возникает в двигателе при его вращении.
Бездатчиковое управление:
Существуют бесколлекторные двигатели без каких либо датчиков положения. В таких двигателях определение положения ротора выполняется путем измерения ЭДС на свободной фазе. Мы помним, что в каждый момент времени к одной из фаз (А) подключен «+» к другой (В) «-» питания, одна из фаз остается свободной. Вращаясь, двигатель наводит ЭДС (т.е. в следствии закона электромагнитной индукции в катушке образуется индукционный ток) в свободной обмотке. По мере вращения напряжение на свободной фазе (С) изменяется. Измеряя напряжение на свободной фазе, можно определить момент переключения к следующему положению ротора.
Что бы измерить это напряжение изпользуется метод «виртуальной точки». Суть заключается в том, что, зная сопротивление всех обмоток и начальное напряжение, можно виртуально «переложить провод» в место соединения всех обмоток:
Регулятор скорости бесколлекторного двигателя:
Бесколлекторный двигатель без электроники — просто железка, т.к. при отсутствии регулятора, мы не можем просто подключить напряжение на него, чтоб он просто начал нормальное вращение. Регулятор скорости — это довольно сложная система радиокомпонентов, т.к. она должна:
1) Определять начальное положение ротора для запуска электродвигателя
2) Управлять электродвигателем на низких скоростях
3) Разгонять электродвигатель до номинальной (заданной) скорости вращения
4) Поддерживать максимальный момент вращения
Принципиальная схема регулятора скорости (вентильная):
Бесколлекторные двигатели были придуманы на заре появления электричества, однако систему управления к ним никто не мог сделать. И только с развитием электроники: с появлением мощных полупроводниковых транзисторов и микроконтроллеров, бесколлекторные двигатели стали применятся в быту (первое промышленное использование в 60-х годах).
Достоинства и недостатки бесколлекторных двигателей:
Достоинства:
-Частота вращения изменяется в широком диапазоне
-Возможность использования во взрывоопасной и агрессивной среде
-Большая перегрузочная способность по моменту
-Высокие энергетические показатели (КПД более 90 %)
-Большой срок службы, высокая надёжность и повышенный ресурс работы за счёт отсутствия скользящих электрических контактов
Недостатки:
-Относительно сложная система управления двигателем
-Высокая стоимость двигателя, обусловленная использованием дорогостоящих материалов в конструкции ротора (магниты, подшипники, валы)
Разобравшись с теорией, перейдем к практике: спроектируем и сделаем двигатель для пилотажной модели МХ-2.
Список материалов и оборудования:
1) Проволока (взятая из старых трансформаторов)
2) Магниты (купленные в интернете)
3) Статор (барашек)
4) Вал
5) Подшипники
6) Дюралюминий
7) Термоусадка
8) Доспуп к неограниченному техническому хламу
9) Доступ к инструментам
10) Прямые руки 🙂
Ход работы:
1) С самого начала решаем:
Для чего делаем двигатель?
На что он должен быть рассчитан?
В чем мы ограничены?
В моем случае: я делаю двигатель для самолета, значит пускай он будет внешнего вращения; рассчитан он должен на то, что он должен выдать 1400 грамм тяги при трех-баночном аккумуляторе; ограничен я в весе и в размере. Однако с чего же начать? Ответ на этот вопрос прост: с самой трудной детали, т.е. с такой детали, которую легче просто найти, а все остальное подгонять под неё. Я так и поступил. После многих неудачных попыток сделать статор из листовой мягкой стали, мне стало понятно, что лучше найти её. Нашел я её в старой видеоголовке от видеорекоудора.
2) Обмотка трехфазного бесколлекторного двигателя выполняется изолированным медным проводом, от сечения которого зависит значение силы тока, а значит и мощность двигателя. Незабываем что, чем толще проволока, тем больше оборотов, но слабее крутящий момент. Подбор сечения:
1А — 0.05мм; 15А — 0.33мм; 40А — 0.7мм
3А — 0.11мм; 20А — 0.4мм; 50А — 0.8мм
10А — 0.25мм; 30А — 0.55мм; 60А — 0.95мм
3) Начинаем наматывать на полюса проволоку. Чем больше витков (13) намотано на зуб, тем большее магнитное поле. Чем сильнее поле, тем больший крутящий момент и меньшее количество оборотов. Для получения высоких оборотов, необходимо мотать меньшее количество витков. Но вместе с этим падает и крутящий момент. Для компенсации момента, обычно на мотор подают более высокое напряжение.
4) Дальше выбираем способ соединения обмотки: звездой или треугольником. Соединение звездой дает больший крутящий момент, но меньшее количество оборотов, чем соединение треугольником в 1.73 раз. (впоследствии было выбрано соединение треугольник)
5) Выбираем магниты. Количество полюсов на роторе должно быть четным (14). Форма применяемых магнитов обычно прямоугольная. Размер магнитов зависит от геометрии двигателя и характеристик мотора. Чем сильнее применяемые магниты, тем выше момент силы, развиваемый двигателем на валу. Также чем больше количество полюсов, тем больше момент, но меньше оборотов. Магниты на роторе закрепляются с помощью специального термоклея.
Испытания данного двигателя я проводил на созданной мной витномоторной установке, которая позволяет измерить тягу, мощность и обороты двигателя.
Чтобы увидеть отличия соединений «звезда» и «треугольник» я соединял по разному обмотки:
В итоге получился двигатель соответствующий характеристикам самолета, масса которого 1400 грамм.
Характеристики полученного двигателя:
Потребляемый ток: 34.1А
Ток холостого хода: 2.1А
Сопротивление обмоток: 0.02 Ом
Количество полюсов: 14
Обороты: 8400 об/мин
Видеоотчет испытания двигателя на самолете. Мягкой посадки 😀
Расчет КПД двигателя:
Очень хороший показатель. Хотя можно было еще выше добиться.
Выводы:
1) У бесколлекторных двигателей высокая эффективность и КПД
2) Бесколлекторные двигатели компактны
3) Бесколлекторные двигатели можно использовать во взрывоопасных средах
4) Соединение звездой дает больший крутящий момент, но меньшее количество оборотов в 1.73 раза, чем соединение треугольником.
Таким образом, изготовить собственный бесколлекторный мотор для пилотажной модели самолета- задача выполнимая
Если у вас есть вопросы или вам что-то не понятно, задавайте мне вопросы в комметариях этой статьи. Удачи всем)
Бесколлекторные электродвигатели
Главная > Реферат >Промышленность, производство
Бесколлекторные (brushless англ.) электродвигатели пришли в моделизм сравнительно недавно, в последние 5-7 лет. В отличие от коллекторных моторов они питаются трехфазным переменным током. Бесколлекторные двигатели эффективно работают в более широком диапазоне оборотов и имеют более высокий КПД. Конструкция двигателя при этом проще, в ней нет щеточного узла, и нет необходимости в техническом обслуживании. Можно сказать, что бесколлекторные моторы практически не изнашиваются. Стоимость бесколлекторных двигателей несколько выше, чем коллекторных. Это вызвано тем, что все бесколлекторные моторы снабжены подшипникам и, как правило, изготовлены более качественно. Хотя, разрыв в ценах между хорошим коллекторным мотором и бесколлекторным двигателем аналогичного класса не столь уж велик.
По конструкции бесколлекторные моторы делятся на две группы: inrunner (произносится как «инраннер») и outrunner (произносится как «аутраннер»). Двигатели первой группы имеют расположенные по внутренней поверхности корпуса обмотки, и вращающийся внутри магнитный ротор. Двигатели второй группы — «аутраннеры», имеют неподвижные обмотки, внутри двигателя, вокруг которых вращается корпус с помещенными на его внутреннюю стенку постоянными магнитами. Количество полюсов магнитов, используемых в бесколлекторных двигателях, может быть разным. По количеству полюсов можно судить о крутящем моменте и оборотах и двигателя. Моторы с двухполюсными роторами имеют наибольшую скорость вращения при наименьшем крутящем моменте. Эти моторы по конструкции могут быть только «инраннерами». Такие двигатели часто продаются уже с закрепленными на них планетарными редукторами, так как их обороты слишком велики для прямого вращения пропеллера. Иногда такие моторы используют и без редуктора — например, ставят на гоночные авиамодели. Моторы с большим количеством полюсов имеют меньшую скорость вращения, но зато больший крутящий момент. Такие моторы позволяют использовать пропеллеры большого диаметра, без необходимости применять редукторы. Вообще, пропеллеры большого диаметра и небольшого шага, при относительно низкой частоте вращения обеспечивают большую тягу, но сообщают модели небольшую скорость, в то время как маленькие по диаметру пропеллеры с большим шагом на высоких оборотах обеспечивают высокую скорость, при сравнительно небольшой тяге. Таким образом, многополюсные моторы идеально подходят для моделей, которым нужна высокая тяговооруженность, а двухполюсные без редуктора — для скоростных моделей. Для более точного подбора двигателя и пропеллера к определенной модели, можно воспользоваться специальной программой MotoCalc.
Так как бесколлекторные моторы питаются переменным током, для работы им необходим специальный к онтроллер (регулятор), преобразующий постоянный ток от батарей в переменный. Регуляторы для бесколлекторных двигателей представляют собой программируемое устройство, позволяющее контролировать все жизненно важные параметры двигателя. Они позволяют не только менять обороты и направление работы мотора, но и обеспечивать в зависимости от необходимости плавный или резкий старт, ограничение по максимальному току, функцию «тормоза» и ряд других тонких настроек двигателя под нужды моделиста. Для программирования регулятора используются устройства для подключению его к компьютеру, либо в полевых условиях это можно делать с помощью передатчика и специальной перемычки.
Производителей бесколлекторных моторов и регуляторов к ним очень много. Конструктивно и по размерам бесколлекторные двигатели тоже сильно различаются. Более того, самостоятельное изготовление бесколлекторных двигателей на основе деталей от CD-приводов и других промышленных бесколлекторных моторов стало весьма распространенным явлением в последнее время. Возможно, именно по этой причине у бесколлекторных двигателей сегодня нет даже такой приблизительной общей классификации как у коллекторных собратьев. Подведем краткий итог. На сегодняшний день, коллекторные двигатели в основном используют на недорогих хоббийных моделях, или спортивных моделях начального уровня. Эти двигатели не дороги, просты в эксплуатации, и по-прежнему составляют самый массовый вид модельных электромоторов. Им на смену идут бесколлекторные моторы . Единственным сдерживающим фактором пока остается их цена. Вместе с регулятором бесколлекторный мотор стоит на 30-70% дороже. Однако, цены на электронику и моторы падают, и постепенное вытеснение из моделизма коллекторных электромоторов — лишь вопрос времени.
AVR492: Управление бесколлекторным электродвигателем постоянного тока с помощью AT90PWM3
Общие сведения о БКЭПТ
Использует контроллер силового каскада
Пример программного кода
В данных рекомендациях по применению описывается, как реализовать устройство управления бесколлекторным электродвигателем постоянного тока (БКЭПТ) с использованием датчиков положения на основе AVR-микроконтроллера AT90PWM3 .
Высокопроизводительное AVR-ядро микроконтроллера, которое содержит контроллер силового каскада, позволяет реализовать устройство управления высокоскоростным бесколлекторным электродвигателем постоянного тока.
В данном документе дается короткое описание принципа действия бесколлекторного электродвигателя постоянного тока, а в деталях рассматривается управление БКЭПТ в сенсорном режиме, а также приводится описание принципиальной схемы опорной разработки ATAVRMC100 , на которой основаны данные рекомендации по применению.
Обсуждается также программная реализация с программно-реализованным контуром управления на основе ПИД-регулятора. Для управления процессом коммутации подразумевается использование только датчиков положения на основе эффекте Холла.
Области применения БКЭПТ непрерывно увеличиваются, что связано с рядом их преимуществ:
Отсутствие коллекторного узла, что упрощает или даже вообще исключает техническое обслуживание.
Генерация более низкого уровня акустического и электрического шума по сравнению с универсальными коллекторными двигателями постоянного тока.
Возможность работы в опасных средах (с воспламеняемыми продуктами).
Хорошее соотношение массогабаритных характеристик и мощности.
Двигатели такого типа характеризуются небольшой инерционностью ротора, т.к. обмотки расположены на статоре. Коммутация управляется электроникой. Моменты коммутации определяются либо по информации от датчиков положения, либо путем измерения обратной э.д.с., генерируемой обмотками.
При управлении с использованием датчиков БКЭПТ состоит, как правило, из трех основных частей: статор, ротор и датчики Холла.
Статор классического трехфазного БКЭПТ содержит три обмотки. Во многих двигателях обмотки разделяются на несколько секций, что позволяет уменьшить пульсации вращающего момента.
На рисунке 1 показана электрическая схема замещения статора. Он состоит из трех обмоток, каждая из которых содержит три последовательно включенных элемента: индуктивность, сопротивление и обратная э.д.с.
Рисунок 1. Электрическая схема замещения статора (три фазы, три обмотки)
Ротор БКЭПТ состоит из четного числа постоянных магнитов. Количество магнитных полюсов в роторе также оказывает влияние на размер шага вращения и пульсации вращающего момента. Чем большее количество полюсов, тем меньше размер шага вращения и меньше пульсации вращающего момента. Могут использоваться постоянные магниты с 1..5 парами полюсов. В некоторых случаях число пар полюсов увеличивается до 8 (рисунок 2).
Рисунок 2. Статор и ротор трехфазного, трехобмоточного БКЭПТ
Обмотки установлены стационарно, а магнит вращается. Ротор БКЭПТ характеризуется более легким весом относительно ротора обычного универсального двигателя постоянного тока, у которого обмотки расположены на роторе.
Для оценки положения ротора в корпус двигателя встраиваются три датчика Холла. Датчики установлены под углом 120° по отношению друг к другу. С помощью данных датчиков возможно выполнить 6 различных переключений.
Коммутация фаз зависит от состояния датчиков Холла.
Подача напряжений питания на обмотки изменяется после изменения состояний выходов датчиков Холла. При правильном выполнении синхронизированной коммутации вращающий момент остается приблизительно постоянным и высоким.
Рисунок 3. Сигналы датчиков Холла в процессе вращения
В целях упрощенного описания работы трехфазного БКЭПТ рассмотрим только его версию с тремя обмотками. Как было показано ранее, коммутация фаз зависит от выходных значений датчиков Холла. При корректной подаче напряжения на обмотки двигателя создается магнитное поле и инициируется вращение. Наиболее распространенным и простым способом управления коммутацией, используемый для управления БКЭПТ, является схема включения-отключения, когда обмотка либо проводит ток, либо нет. В один момент времени могут быть запитаны только две обмотки, а третья остается отключенной. Подключение обмоток к шинам питания вызывает протекание электрического тока. Данный способ называется трапецеидальной коммутацией или блочной коммутацией.
Для управления БКЭПТ используется силовой каскад, состоящих из 3 полумостов. Схема силового каскада показана на рисунке 4.
Рисунок 4. Силовой каскад
По считанным значениям датчиков Холла определяется, какие ключи должны быть замкнутыми.
Таблица 1. Коммутация ключей по часовой стрелке
Бесколлекторный электродвигатель — что это такое?
Подписка на рассылку
- ВКонтакте
- ok
- YouTube
- Яндекс.Дзен
- TikTok
Что такое бесколлекторный электродвигатель, понять, на первый взгляд, очень сложно. Этот двигатель отличает довольно большая цена, а также необычный способ работы. В традиционном двигателе обыкновенный ротор с обмоткой вращается внутри статора, на котором расположены постоянные магниты. При этом обмотки коммутируются специальным коллектором — в зависимости от постоянного положения ротора. Настоящий бесколлекторный электродвигатель представляет собою механизм, в котором ротор-коллектор, напротив, вращается по оси вокруг статора.
3-фазный двигатель переменного тока выглядит именно таким образом. При этом необходимо питать двигатель только постоянным током, а обороты двигателя непременно должны меняться параллельно тому, как поступает ток в механизм. Обмотки мотора нужно переключать в прямой зависимости от того, как меняется его положение. Датчики Холла в этом механизме выполняют функцию датчиков положения магнита — ротора. Именно они выступают в роли подающих сигнал и переключают положение обмотки.
Крепление данных датчиков выполнено следующим образом: благодаря удобному креплению датчики можно поворачивать вокруг оси самого двигателя, чтобы настроить наиболее удобную фазу переключения. Таким образом, бесколлекторный электродвигатель представляет собою устройство, состоящее из 3-фазного двигателя и 2-фазного мотора.
Виды устройств
Бесколлекторные двигатели бывают постоянного и переменного тока. Бесколлекторный двигатель постоянного тока очень похож на механизм с переменным током, при этом его устройство дает распределение иначе. Магнитный ротор вращается в специальном статоре с магнитными обмотками. В том случае, если двигатель создан без датчиков Холла, сам двигатель представляет собою механизм с фиксаторами в виде обмотки статора. Трехфазный бесколлекторный двигатель постоянного тока — это механизм, в котором контроль тока выполняется при помощи механизма аналогового компаратора.
Традиционно управление бесколлекторным двигателем осуществляется при помощи специального электронного блока управления. В этом блоке расположены все электронные схемы, подающие сигналы в двигатель. Схема управления бесколлекторным двигателем — очень сложный механизм. Для двигателей с маленькой мощностью используется микросхема, состоящая из 6 транзисторов, подающих электрический ток, в двигателях с большой мощностью используются сложные микросхемы.
Обыкновенный регулятор скорости бесколлекторного двигателя — это устройство, которое подключается для управления механизмом. Бесколлекторные двигатели широко используются для авиамоделей, и чтобы управлять ими, необходимо подключить регулятор скорости. Регулятор представляет собою электронное устройство, дающее возможность контролировать скорость работы любого изделия.
Отличительные особенности бесколлекторных двигателей — это их высокая мощность, большая скорость работы устройств, все чаще в связи с высокой производительностью. Такие типы двигателей применяют на производстве при внедрении новых технологий. Двигатель без коллектора отличается большой мощностью, высокой надежностью, низкой степенью износа. На производстве и в промышленности этот тип мотора незаменим. Радиоуправляемые самолеты и машинки также оснащены небольшими бесколлекторными двигателями.
Очень удобно применять такие типы двигателей в радиоуправляемых моделях вертолета. Их небольшой вес и отсутствие лишних приспособлений дает возможность разместить двигатель даже в самом тесном пространстве.
Бесколлекторный двигатель что внутри
В последнее время приходится часто встречать новый тип электромоторов — бесколлектоные (brushless). Всегда поражают их выдающиеся характеристики и заоблачная цена. Поскольку я получил несколько писем с вопросами по бесколлекторным двигателям, то попробую объяснить — что же это за моторы, какие преимущества они дают, почему же они так дорого стоят, и т.п.
Надеюсь, все примерно представляют себе устройство обычного коллекторного электродвигателя на постоянных магнитах? — Ротор с обмотками вращается внутри статора с постоянными магнитами, а обмотки коммутируются коллектором в зависимости от положения ротора. Теперь попробуйте «вывернуть наизнанку» — ротор-магнит вращается внутри статора с обмотками (который тоже набран из пластин, подобно ротору обычного мотора). Знакомая картина, правда? — Так выглядит 3-х фазный синхронный двигатель переменного тока. Почти также выглядит и асинхронный двигатель, разница только в конструкции ротора. Только нам нужно питать двигатель постоянным током и его обороты должны меняться подобно тому, как у коллекторного мотора — в зависимости от нагрузки и подводимого напряжения. А для этого надо переключать обмотки статора в зависимости от положения ротора. Датчиками положения ротора-магнита служат датчики Холла, сигнал с которых (пропорционален магнитному полю) усиливается и при помощи особой схемы переключает обмотки. Для 3-х полюсного статора и обычного магнита-ротора (2-х полюсного) эти датчики расположены по дуге -120 и 240 градусов — т.е. после усиления и дискриминации по уровню поля (обычными компараторами) получаем как раз 3 состояния в течение одного оборота, соответствующие переключению 3-х фаз.
Крепление датчиков обычно делается таким образом, чтобы их можно было поворачивать вокруг оси двигателя, настраивая оптимальную фазу переключения (подобно тому, как это делается в коллекторных двигателях поворотом щёточного узла). Основа схемы переключения — мощные МОП ключи, которые включают и выключают обмотки, согласно положению ротора. Обмотки двигателя подключены по схеме «звезда» — это упрощает конструкцию схемы переключения. Таким образом, в случае бесколлекторного двигателя мы имеем 2 обязательные части — 3-х фазный двигатель и особый регулятор оборотов, создающий 3-х фазный сигнал для обмоток. Отчасти в этом и кроется достаточно высокая цена мотора.
Какие же преимущества даёт такой двигатель?
Главное преимущество — отсутствие вращающихся контактов и переключающихся контактов вообще — а это главный источник потерь в электродвигателях на постоянных магнитах. Вообще-то насыщение магнитного поля тоже проблема, но на моделях применяют двигатели с качественными и мощными магнитами, а в дорогих двигателях — магниты на основе редкоземельных металлов, обладающие повышенной намагниченностью и стойкостью — так что насыщением магнитного поля в реальных условиях работы моторов можно пренебречь. Вместо вращающихся контактов переключение осуществляют полупроводниковые МОП транзисторы. Ещё не так давно подобные транзисторы были очень дороги и не обладали необходимыми характеристиками — предельный ток был ограничен несколькими амперами, а внутреннее сопротивление составляло Омы. Поэтому применение бесколлекторных двигателей для мощностей десятки ватт и выше было невозможно (или массогабаритные показатели их были гораздо хуже). Но сейчас подходящие мощные полевые транзисторы стали относительно недороги (цены порядка 0.5-3$), их показатели значительно выросли — допустимый рабочий ток (правда, при массивном радиаторе) достигает сотни ампер и выше, внутреннее сопротивление — несколько миллиОм. Кстати, если применять такой транзистор без радиатора, ограничив выделяемую мощность на них значением 2,5-4 Вт, рабочий ток может быть в пределах 10-30 А, в зависимости от конкретного типа. Это позволяет сделать электронный коммутатор 3-х фаз питания двигателя с чрезвычайно малыми потерями. Поэтому бесколлекторные двигатели обладают очень высоким КПД — 80-95%. Как иллюстрацию выигрыша можно привести сравнение мотора Speed-400 и позиционирующегося с ним в одном классе Astro Flight 020 Brushless. В обычных условиях работы Speed-400 на авиамодели, его КПД составляет 40-60% при потребляемой мощности 40-80Вт. 020 Brushless в тех же условиях работает с КПД 87-95%, кроме того, его максимальная мощность может достигать 200-250Вт при КПД около 80%.
Теперь учтите КПД винта и потери в редукторе (если он есть) — получается, что при одном и том же питании, задавшись одним и тем же временем работы двигателя, можно получить примерно вдвое большую полезную выходную мощность для 020 Brushless (а значит и тягу). Либо увеличить почти вдвое полётное время.
Вторая хорошая сторона бесколлекторных двигателей — потрясающий ресурс механической части — в таких двигателях ось крепится на шарикоподшипниках, трущиеся и истираемые части отсутствуют — ломаться практически нечему. Саморазмагничивание магнитов достаточно медленное — порядка нескольких процентов за несколько лет, как и в любом моторе. Единственная возможность — разбить мотор в падении, но это справедливо для любого двигателя. Можно сжечь контроллер — как и любой регулятор оборотов. Но при наличии в контроллере защиты по току и аккуратной эксплуатации он тоже прослужит долго.
Теперь можно остановиться на вопросе о цене — за что же мы вынуждены платить столь много, покупая бесколлекторный двигатель?
Механическая часть не сложнее, чем обычный мотор — может быть, изготовить наборный статор с обмоткой сложнее, чем наборный ротор, но зато полностью отсутствует коллектор и щётки — в хороших моторах конструкция этого узла не такая уж и простая. В бесколлекторных двигателях для моделей ротор-магнит изготавливается на основе редкоземельных металлов (самарий-кобальтовые, или неодимовые), поэтому достаточно дорог. Но в целом механика не должна стоить дороже, чем качественный коллекторный двигатель с подобными магнитами. А вот контроллер — регулятор оборотов обязателен! Без него просто невозможно заставить мотор работать. Я не собираюсь вдаваться сейчас в подробности схемы, но сегодня все регуляторы делаются на базе дешёвых микрочипов (однокристальных микроЭВМ), в нашем же случае разница заключается в выходных ключах — их количество утраивается, поскольку приходится коммутировать 3 фазы. Относительно добавочной стоимости компонентов — это максимум 10$ лишних (это зависит от типа и количества необходимых выходных транзисторов), а датчики Холла очень дешёвые. В то же время, такой контроллер обычно стоит на уровне Hi-End регуляторов для обычных моторов, не обеспечивая таких же сервисных функций. Всё это конечно на совести производителей, продавцов и т.п. Но не забывайте, что к обычному мотору тоже необходим регулятор оборотов. Так что сложите стоимость мотор + регулятор в обоих случаях — получите примерно ту же разницу, что и при сравнении ДВС класса МДС-ThunderTiger с двигателями класса Rossi-Saito — так что разница в ценах с этой точки зрения достаточно разумна. Тем более что разница в качестве получаемой мотоустановки более чем адекватна.
Кратко об электронике.
Почему используют датчики Холла? Видимо, так оказалось проще всего и так сложилось. Но можно использовать датчик на основе оптопар и насадить на вал мотора диск с прорезями. В крайнем случае, можно даже использовать контакты, скользящие по диску с проводящими секторами. При этом контакты переключают лишь слаботочные цепи управления, а обмотки переключаются без потерь силовыми ключами. В таком случае примерная схема выглядит так — берётся обычный регулятор, добавляется ещё 2 выходных каскада, а управляющий сигнал на эти 3 выходных каскада подаётся через описанный выше коммутатор. Но для «нормальной» схемы с датчиками Холла отличие от подобной простой схемы будет составлять лишь в добавлении 2-х усилителей-компараторов датчиков Холла и мультиплексора 1 на 3. В реальных контроллерах-регуляторах всё это зашито в логику работы микрочипа, который обрабатывает сигналы датчиков и приёмника и выдаёт необходимые сигналы на выходные ключи.
В последнее время можно встретить новые варианты комплектов бесколлекторных моторов — бездатчиковые. Их принцип основан на том, что движущийся магнит наводит в обмотках статора ток. При отключении обмотки она используется как датчик, и наведённый сигнал измеряется и обрабатывается микрочипом. Этот алгоритм довольно сложный и для реализации желателен процессор обработки сигналов. Подробную информацию о таком варианте питания бесколлекторного мотора можно найти на сайте фирмы Texas Instruments. Там же есть пример реализации алгоритма для сигнального микрочипа этой фирмы.
Попутно замечу, что для торможения и реверса бесколлекторного электродвигателя вовсе необязательны дополнительный транзистор тормоза или мостовая схема реверса питания — достаточно лишь сдвигать фазы в обратной последовательности, включая обмотки «на противоходе» — а это ещё экономия транзисторов и улучшение параметров (мостовая схема из 4-х идентичных транзисторов обладает вдвое большим внутренним сопротивлением, чем один такой же в нереверсивной — однотактной схеме).
Можно ли попробовать самому изготовить такой двигатель? Решайте сами. Если удастся достать маленький синхронный двигатель переменного тока, то вам останется только изготовить контроллер и установить датчики положения. Хотя обмотки, скорее всего, придётся перемотать. Можно попробовать использовать статор от ассинхронного двигателя и сделать ротор-магнит самому (если кто знаком с технологией обработки таких твёрдых материалов, как магниты, без потерь намагниченности или имеет доступ к промышленному оборудованию для изготовления магнитов). Обмотки статора обычно содержат меньшее число витков, чем обмотки ротора коллекторного двигателя.
Например, двигатели Aveox имеют 2-4 витка для 6-20 элементов в батарее (в зависимости от модификации), а «гоночные» и «импеллерные» версии — даже один виток. Замечу, что роторы этих двигателей — самарий-кобальтовые магниты. Так что в случае ферритовых магнитов число витков в обмотках нужно увеличить примерно вдвое. Контроллер способен изготовить всякий опытный радиолюбитель, знакомый с технологией программирования микрочипов.
Теперь можно сравнить массы мотоустановок в случаях обычного мотора и бесколлекторного. Массы самих моторов не должны сильно отличаться — статор с обмотками может и тяжелее обычного, но ведь нет коллекторного узла (качественный узел не может быть маленьким и лёгким на таких токах). Теперь контроллер — как я отмечал ранее, число выходных транзисторов утраивается (это в худшем случае, а если исключить транзисторы тормоза или мостовую схему для реверса, то практически одно и то же). Масса транзисторов в пластмассовых корпусах типа TO-220 — около 2-2,5 грамм. Ещё добавляются 2 силовых провода к мотору — это уже добавка серьезнее, но если регулятор разместить рядом с мотором (обычно так и делают), то это лишь немного увеличит общий вес. Ну, немного увеличится плата — добавьте 1-2 грамма. Так что получается, что по сравнению с простым 20-амперным регулятором вес увеличится на 7-8 грамм (один коммутирующий транзистор на фазу). Для 40-амперного регулятора — на 12-14 грамм (по 2 транзистора на фазу), а для 60-амперного — на 17-20грамм (по 3 транзистора на фазу), по сравнению с аналогичными регуляторами коллекторных двигателей. Я здесь привёл раскладку для ХОРОШИХ транзисторов (2,2-3$), в случае применения их без радиаторов, а указанный ток — рабочий, причём сколь угодно долго. Максимальный РАБОЧИЙ ток (т.е. работа допустима недолгое время, пока транзисторы не перегреются — это режимы разгона, торможения) будет в 5-6 раз больше. О качестве применяемых транзисторов в коммерческих регуляторах — разговор особый. Даже в солидных регуляторах ставят транзисторы не самые лучшие, а уж в дешёвых корейских — и говорить нечего. Кстати, совет — перепаяйте транзисторы в вашем регуляторе на достойные — сразу почувствуете разницу.
Приводимые в каталогах характеристики регуляторов неоправданно завышены. Покупать приходится за большие деньги, а получаем … Ну да ладно, не будем о грустном. Вывод такой — грамотно сделанный регулятор для бесколлекторного двигателя может быть даже легче отстойного дешёвого регулятора обычного мотора.
Так что массы мотоустановок с двигателями разного типа не должны сильно отличаться.
Ещё один миф, причём встречающийся и в западной литературе — это то, что бесколлекторные двигатели не могут работать с большими импульсными нагрузками (т.е. с большими пиковыми токами через обмотки). Вроде бы, это ограничение вносит контроллер. Это опять на совести производителей контроллеров-регуляторов. Если они применили дешёвые транзисторы для коммутации фаз, то конечно, максимальный ток будет ограничен этими ключами. Это ограничение — вымысел, ХОРОШИЕ транзисторы допускают такую перегрузку, при которой коллекторный узел может просто сгореть (или соединительные провода). Пиковый ток нормально сделанного регулятора может достигать килоампер — куда уж больше. А ещё в контроллер можно (как и в любой регулятор) ввести защиту от перегрузок по току. Мой личный опыт со стандартными регуляторами (на ХОРОШИХ транзисторах) ни разу не приводил к пробою транзисторов — горели провода, проводники на плате, разъёмы, удавалось подпортить коллектор (дешёвого движка типа ДПМ при заклинивании). Более того, можно уверенно говорить, что бесколлекторные двигатели ЛУЧШЕ работают с импульсными нагрузками, поскольку не содержат контактов.
В заключение, можно с уверенность констатировать тот факт, что бесколлекторные двигатели — это то будущее, к которому скоро придут все любители электромоделей, но сейчас оно не совсем доступно из-за высокой цены. Тем же, кто «за ценой не постоит» можно смело рекомендовать приобрести подобный двигатель.