Arskama.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Блок управления асинхронным двигателем схема

Схемы управления электродвигателями

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Современное оборудование часто работает в автоматическом и полуавтоматическом режиме. Это позволяет исключить пресловутый человеческий фактор, увеличить объемы и темпы производимых операций, сделать производство более рентабельным. Одним из главных факторов надежной работы современного оборудования является безупречное выполнение включения электродвигателей, которое выполняется в заданной последовательности и с соблюдением штатного режима работы. Схемы управления электродвигателями могут быть различны, так как принципы автоматического и полуавтоматического режима работы могут существенно отличаться друг от друга.

Полуавтоматическое управление предусматривает участие оператора, который инициирует пуск оборудования нажатием соответственной кнопки или поворачивая рычаг. После этого функция персонала заключается лишь в контроле рабочего процесса. При автоматическом управлении первоначальный пуск оборудования осуществляют реле или датчики, после чего работы выполняется в соответствие с заданными программами. Такое программное устройство часто выполняется с помощью логических схем, вариантов которых может быть довольно много. В промышленности наиболее часто встречаются следующие схемы управления асинхронными электродвигателями:

• нереверсивного управления;
• реверсивного управления с двумя магнитными пускателями.

Основные схемы управления асинхронным электродвигателем

При использовании схемы управления электродвигателем с нереверсивным управлением после пуска происходит подключение к сети электромагнитной катушки. С ее сердечником соприкасается подвижный якорь и замыкает силовые контакты. В результате на двигатель подается трехфазное напряжение. Параллельно с силовыми контактами замыкаются блокировочные, что позволяет зашунтировать кнопку пуска и отпустить ее. Нажимая кнопку стоп, оператор тем самым разрывает цепь, от которой запитана электромагнитная катушка. Это освобождает якорь, который при падении размыкает силовые контакты, что приводит к остановке оборудования. В этой схеме управления защита от длительной перегрузки обеспечивается подключением к двум фазам тепловых реле.

Схема управления реверсивным электродвигателем имеет два магнитных пускателя. Один из них соединяет схему включения на прямое вращение, а второй – на обратное включение. Кнопками «вперед» и «назад» подключаются те электромагнитные катушки, которые отвечают за соответствующую операцию. Реверсивные пускатели состоят из двух нереверсивных пускателей, имеют механическую блокировку, исключающую одновременное включение. Остановка двигателя включена в общую цепь управления.

Схемы управления электродвигателями постоянного тока и синхронными двигателями

Схема управления электродвигателем постоянного тока может быть следующих видов:

• с нижним расположением ключа;
• с верхним расположением ключа;
• мостовая схема.

Все они базируются на принципах ШИМ и основных характеристиках двигателя. Наиболее экономичной схемой является с нижним расположением ключа, его верхнее расположение используют при повышенных требованиях к безопасности. Мостовая схема используется при реверсивном управлении двигателем.

Синхронные двигатели сложнее асинхронных, но они менее чувствительны к колебаниям напряжения и более устойчивы к перегрузкам. Это стало причиной их широкого распространения. Схема управления синхронным электродвигателем обычно включается в себя тиристорные возбудители, которые заменили электромашинные возбудители, долгое время являвшиеся уязвимым местом этого типа электромоторов.

Оборудование для схем управления низковольтными асинхронными двигателями

Применение

Блок управления самозапуском Щ23М (блок Щ23М) предназначен для эксплуатации в схемах управления низковольтными асинхронными двигателями и осуществления самозапуска асинхронных электродви-гателей (автоматического восстановления работы электродвигателей) после кратковременного (не более 5 с) перерыва электроснабжения или срабатывания устройств релейной защиты.

Характеристики

Электрическое питание блока Щ23М — однофазный переменный ток со следующими параметрами:

— напряжение – 220 В с допускаемым отклонением от минус 15 до плюс 10 %;

— частота – 50 Гц с допускаемым отклонением ± 2 %.

Рабочее положение блока Щ23М при эксплуатации:

— вертикальное, допустимое отклонение от рабочего положения не более 5 градусов в любую сторону.

Количество контактов выходного органа (количество запускаемых электродвигателей) — 1.

Конструкция

  • Конструктивно блок Щ23М выполнен в виде единого устройства.
  • Все элементы и составные части блока Щ23М конструктивно установлены на пластмассовом основании и закрыты пластмассовым кожухом.
  • На верхнюю крышку кожуха выведены следующие элементы:

— тумблер переключения режимов работы ВКЛ-ВЫКЛ-КОНТРОЛЬ;

— сигнальная лампа СЕТЬ;

— сигнальная лампа КОНТРОЛЬ.

  • Сбоку блока Щ23М размещена клеммная колодка, закрытая крышкой, которая обеспечивает внешнее подключение блока (в т.ч. установку времени задержки выдачи команды на самозапуск).
  • Схема подключения блока Щ23М к аппарату управления электродвигателем при индивидуальном самозапускеСхема подключения блоков Щ23М при поочередно-групповом самозапуске с блокировкой последовательности включения

    Технические характеристики

    • Габаритные размеры блока Щ23М не более 220 * 140 * 150 мм.
    • Масса блока Щ23М не более 2,5 кг.
    • Номинальное коммутируемое напряжение контактов — до 380 В.
    • Номинальный ток выходных контактов — 6 А.
    • Полная мощность, потребляемая блоком Щ23М в режиме ожидания, не более 4 В•А.
    • Блок Щ23М обеспечивает выдачу команды на самозапуск электродвигателя после перерыва электроснабжения продолжительностью не более 5 с.
    • Блок Щ23М обеспечивает выдачу команды на самозапуск при минимальной величине восстанавливающего напряжения сети, находящейся в диапазоне от 190 до 200 В.
    • Блок Щ23М обеспечивает выдачу команды на самозапуск с задержкой времени, определяемой внешними цепями, равной 0, 2, 4, 6, 8 и 10 с.
    • Относительная погрешность выдачи команды на самозапуск с задержкой времени равной 2, 4, 6, 8 и 10 с — не более ± 10 %. Погрешность задержки выдачи команды на самозапуск при установленном внешними цепями значении равном 0 с — не более 0,5 с.
    • Блок Щ23М не выдает команду на самозапуск отключенного внешними цепями электродвигателя.
    • Блок Щ23М обеспечивает в режиме ожидания перерыва электроснабжения контроль готовности осуществления самозапуска.
    Читать еще:  920 что за двигатель

    Пример записи при заказе блока управления самозапуском Щ23М –

    Блок управления самозапуском Щ23М НМЕК.403455.001 ТУ.

    Схемы управления асинхронным двигателем в формате dwg

    В данной статье речь пойдет о схемах управления асинхронным двигателем (АД). В настоящее время существуют три наиболее часто используемые схемы управления асинхронным двигателем с короткозамкнутым ротором:

    • схема управления нереверсивным двигателем – «прямой пуск»;
    • схема реверсивного управления двигателем;
    • схема управления двигателем «звезда-треугольник».

    В конце данной статьи, вы сможете скачать данные схемы выполненные в программе AutoCad в формате dwg.

    Схема управления нереверсивным двигателем – «прямой пуск»

    Данная схема состоит из следующих устройств:

      автоматический трехполюсный выключатель – QF1 (защита цепей питания двигателя

    380В);

  • линейный контактор – КМ1;
  • тепловое реле – КК1 (защита от перегрузки двигателя);
  • предохранитель – FU1 (защита цепей управления

    220В);

  • кнопки «СТОП» и «ПУСК» с самовозвратом – SB1 и SB2;
  • сигнальные лампы — HL1 и HL2.
  • При нажатии кнопки SB2 «ПУСК» подается напряжение на катушку контактора КМ1. Контактор срабатывает и своими силовыми контактами подключает к сети 380В асинхронный двигатель. При этом своими контактами 14-13 шунтирует кнопку SB2, делается это для того, чтобы катушка контактора была постоянно под напряжением и он не отключался при отпускании кнопки SB2.

    Отключение двигателя происходит нажатием кнопки SB1 «СТОП». Для защиты от перегрузки двигателя применяется тепловое реле КК1, в случае перегрузки двигателя, контакты 96-95 реле КК1 размыкаются снимая напряжение с катушки контактора КМ1.

    Схема реверсивного управления двигателем

    Отличие данной схемы от предыдущей схемы в том, что изменяя порядок чередования фаз на статоре двигателя, мы изменяем направление вращения ротора двигателя «Вправо» — «Влево».

    При нажатии кнопки SB2 «Открыть» (в данном примере схема используется для управления реверсивной задвижкой) срабатывает контактор КМ1 и ротор двигателя вращается в одну сторону при этом задвижка открывается. В этом случае порядок чередования – А, В, С.

    Что бы ротор двигателя вращался в другую сторону, нужно сначала нажать кнопку SB1 «СТОП» и лишь потом нажать кнопку SB3 «Закрыть», в результате сработает контактор КМ2 и ротор двигателя вращается в обратную сторону при этом задвижка закрывается. Порядок чередования фаз – С, В, А.

    Во избежание короткого замыкания при одновременном нажатии кнопок SB2 и SB3 используются нормально-закрытые контакты 22-21 контакторов КМ1 и КМ2 и таким образом исключается возможность включения одного контактора пока не обесточится другой.

    Схема управления двигателем «звезда-треугольник»

    Данная схема применяется когда нужно уменьшить пусковой ток двигателя, в основном она используется для двигателей большой мощности.

    В момент пуска, обмотки статора двигателя соединены в «звезду», после того как двигатель разогнался, происходит переключение обмоток статора со «звезды» на «треугольник».

    Подробно об изменении мощности при схеме соединении двигателя звезда-треугольник рассмотрено в статье: «Расчет мощности двигателя при схеме соединения звезда-треугольник».

    При нажатии кнопки SB2 «ПУСК» подается напряжение на катушку реле времени КТ1, контактора КМ1 и промежуточного реле KL1. Реле KL1 добавлено в схему в связи с тем, что у реле времени есть только одна группа блок-контактов, если же у Вашего реле времени есть дополнительная группа блок-контактов, реле KL1 – не используется. Не много забегая вперед, в архиве вы сможете найти схему управления двигателем «звезда-треугольник» без промежуточного реле KL1.

    После того как сработало реле KL1 мгновенно замыкаются его контакты 11-14 и через нормально закрытые контакты 22-21 контактора КМ2 срабатывает контактор КМ3. При этом контакты 21-22 реле KL1 размыкаются, тем самым выполняется блокировка от одновременного включения контакторов КМ3 и КМ2.

    Когда контактор КМ3 сработал, он своими силовыми контактами соединяет обмотку статора двигателя «звездой».

    После того как двигатель разогнался при пониженном напряжении, контакты реле времени КТ1 11-12 разомкнутся, тем самым сняв напряжение с катушки реле KL1, в это время контакты реле KL1 11-14 размыкают цепь включения контактора КМ3, а в цепи включения контактора КМ2 замыкаются, и если контакты 21-22 контактора КМ3 замкнуты, то включается контактор КМ2.

    После этого контактор КМ2 своими силовыми контактами соединяет обмотку статора двигателя «треугольником».

    На этом процесс подключения двигателя к сети

    380 В – заканчивается.

    В архиве вы сможете найти следующие схемы в формате dwg:

    • схема управления нереверсивным двигателем – «прямой пуск»
    • схема реверсивного управления двигателем
    • схема управления двигателем «звезда-треугольник» с реле времени и промежуточным реле
    • схема управления двигателем «звезда-треугольник» с реле времени

    Книга: Башенные краны

    Навигация: Начало Оглавление | Другие книги | Отзывы:

    § 51. Тиристорная схема управления асинхронным электродвигателем

    В связи с увеличением длины канатов крюковой подвески на кранах с большой высотой подъема возникла необходимость в плавном регулировании скорости механизма поворота, поэтому на этих кранах применяют специальные схемы электроприводов. В схеме на рис. 99 механизм поворота приводится асинхронным электродвигателем Ml с фазным ротором, управляемым с помощью тиристоров.

    Рис. 99. Электропривод механизма поворота с тиристорным управлением:

    а — функциональная электрическая схема, б — механические характеристики привода; ГПН — блок генератора пилообразного напряжения, ФИ — блок формирования импульсов, УМ И — блок усиления мощности импульсов, БТР — блок тормозного режима, ОВГ — обмотка возбуждения тахогенератора; G — тахогенератор, V9 — выпрямитель цепи обратной связи по току, U — задающее напряжение

    Читать еще:  Электрическое торможение двигателя что это

    В приводе использован параметрический способ регулирования скорости, основанный на изменении напряжения, подводимого к статору электродвигателя. Развиваемый электродвигателем вращающий момент пропорционален квадрату подводимого напряжения, поэтому изменение напряжения на зажимах электродвигателя вызывает изменение частоты вращения его ротора.

    На схеме тиристоры VI — V6 включены встречно-параллельно в каждую фазу статора электродвигателя и выполняют роль быстродействующих бесконтактных переключателей. Напряжение, подводимое к электродвигателю, изменяется управлением проводимости тиристоров. Для получения жестких механических характеристик в схеме предусмотрена обратная связь по частоте вращения, выполненная с помощью тахогенератора G, и динамическое торможение асинхронного электродвигателя, которое осуществляется с помощью тиристоров V7 и V8, причем переход от двигательного режима работы электродвигателя к тормозному режиму происходит автоматически с помощью блока тормозного режима БТР.

    Тиристорами управляют с помощью электронной схемы. Управляющее напряжение постоянного тока снимается с резистора с переменным сопротивлением, подается в блок генератора пилообразного напряжения ГПН и сравнивается с пилообразным напряжением синхронным и синфазным с сетью. Резистор связан с командоконтроллером, и величина его сопротивления зависит от положения рукоятки управления. При установке рукоятки управления в одно из положений вправо (влево) в результате отклонения напряжения пилообразной формы относительно напряжения управления появляется импульс, длительность которого зависит от значения напряжения управления, т. е. от положения, в которое установлена рукоятка управления. Этот импульс поступает в блок формирования импульса ФИ, в котором происходит его предварительное усиление и преобразование в импульс соответствующей формы. Преобразованный импульс поступает в блок усиления мощности импульсов У МИ, где усиливается до значений, необходимых для надежного управления тиристорами, после чего поступает на управляющие электроды тиристоров. При этом открыты и управляются тиристоры VI — V6, тиристоры V7 и V8 заперты и электродвигатель Ml работает в двигательном режиме.

    В двигательном режиме работы привода напряжение управления больше напряжения обратной связи, снимаемого с тахогенератора G, и ток протекает в соответствии с полярностью напряжения управления. Момент сопротивления механизма поворота в процессе работы крана может изменяться в зависимости от ветровой нагрузки и подветренной площади обрабатываемого груза. При изменении знака момента сопротивления на валу электродвигателя система начинает ускоряться. Напряжение обратной связи становится больше напряжения управления, вследствие чего изменяется направление тока в цепи и появляются импульсы в блоке БТР. Эти импульсы поступают в блок ФИ, который запирает тиристоры V2, V3, V5, V6 и открывает тиристоры V7, V8 (тиристоры VI и V4 остаются открытыми). Электродвигатель начинает работать в режиме динамического торможения, затормаживая механизм поворота. Когда частота вращения привода уменьшится до величины, заданной управлением, напряжение обратной связи снова станет меньше напряжения управления. При этом исчезнут импульсы в блоке БТР, блок ФИ запрет тиристоры V7 и V8, откроет тиристоры V2, V3, V5, V6 и электр двигатель автоматически перейдет в двигательный режим работы.

    Механические характеристики привода (рис. 99, б) обеспечивают работу механизма поворота крана с различной скоростью, величина которой зависит от положения рукоятки командоконтроллера.

    Управление асинхронными двигателями (АД)

    Схема управления с реверсивным магнитным пускателем (МП)

    Схема (рис. 17.10) включает реверсивный МП и кнопки управления SB1 (Вперед), SB2 (Назад), SB3 (Стоп).

    Схема обеспечивает: дистанционный пуск, реверсирование и останов, защиту двигателя от перегрузки, защиту от само­запуска.

    МП состоит из двух контакторов переменного тока КМ1 и КМ2 с главными и вспомогательными контактами (блок-кон­тактами) и тепловыми реле КК с размыкающим контактом. Сведения о МП приведены в главе 9.

    Для пуска двигателя оператор нажимает на кнопку SB1,nu6o SB2. Катушка КМ1 (либо КМ2) получает питание, контактор срабатывает, включая контакты в цепи статора и блокирует пусковую кнопку. Двигатель разгоняется. При перегрузке (если ток статора длительно превышает 1,1 — 1,2 номинального значения) срабатывают тепловые реле КК, отключая своим контактом цепь питания катушки. В МП предусмотрена электрическая блокировка от одновременного включения кон­такторов.

    Для остановки оператор нажимает на кнопку SB3 (Стоп).

    Для защиты от коротких замыканий используется авто­матический выключатель OF с электродинамическим расцепителем.

    Рис. 17.10. Схема управления АД с реверсивным МП

    Схема управления АД с узлом электродинамического

    торможения

    Схема (рис. 17.11) включает магнитный пускатель КМ, кноп­ки управления SB1 (Пуск), SB2 (Стоп), контактор электроди­намического торможения КМ1, выпрямитель V, питающий реле времени КТ, и реостат R, ограничивающий тормозной ток статора. Предохранители FA защищают цепи управления с коротких замыканий.

    Пуск АД осуществляется нажатием на кнопку SB1 (Пуск). Контактор КМ включает главные контакты в цепи статора АД, блокирует пусковую кнопку, отключает цепь контактора КМ1 и включает катушку реле КТ. АД запускается в режиме прямого пуска.

    Для остановки АД нажимают на кнопку SB2 (Стоп). КМ отключается, отключив статор от сети переменного тока. Од­новременно включается КМ1, и постоянное напряжение выпрямителя подается в статор АД. Сопротивление R позволяет регулировать величину тока динамического торможения и, тем самым, интенсивность торможения. Время торможения опреде­ляется уставкой реле времени КТ. По его истечении контакт КТ с выдержкой времени на отключение размыкает цепь КМ1, который отключается и отключает обмотку статора от выпрями­теля. Схема возвращается в исходное состояние.

    Управление двухскоростным АД

    Типовая схема управления двухскоростным АД представ­лена на рис. 17.12. Схема включает полюснопереключаемый АД, контакторы КМ1—КМ4, блокировочное реле KV, двухцепные кнопки SB1 (Вперед), SB2 (Назад), SB4, SB5, а также кнопку SB3 (Стоп).

    Читать еще:  Двигатель mercedes 501 характеристики

    Рис. 17.11. Схема управления АД с динамическим торможением

    Две скорости АД получают путем соединения обмотки статора в треугольник (контактор КМ2), либо в двойную звезду (контактор КМ1).

    Схема обеспечивает пуск и реверсирование АД, его работу на двух скоростях, защиту АД от перегрузки и самозапуска.

    Пуску АД «вперед» или «назад» предшествует пред­варительное соединение его обмоток в треугольник (включают КМ2), что соответствует низкой скорости, либо в двойную звезду ( включают КМ1) — высокая скорость. При этом включается реле блокировки KV, разрешающее запуск двига­теля, благодаря включению его контактов в цепи катушек контакторов КМЗ и КМ4. Нажав на кнопку SB1, либо SB2, оператор запускает двигатель «вперед» или «назад».

    Одновременное включение контакторов КМ1КМ4 ис­ключается применением двухцепных кнопок, а также пере крестным включением размыкающих блок-контактов контак­торов в цепи питания их катушек.

    Типовая схема управления АД с фазным ротором

    Схема включает АД с фазным ротором, типовую панель управления серии ПДУ6220, пускорегулирующие реостаты Rd1, Rd2, реостат динамического торможения Rdm, а также командоаппарат SА (рис. 17.13).

    Схема обеспечивает пуск АД в две ступени в функции независимой выдержки времени, автоматическое динамическое

    торможение, максимальную защиту АД (реле тока FA1FA3), защиту от самозапуска.

    Командоаппарат SA, имеющий нейтральное положение О и три равнозначных положения влево и вправо (/, 2, 3), позволяет выбрать режимы работы. В нейтральной позиции О реле KV включено и обеспечивает готовность ЭП к пуску. При переводе $А в любое положение /, 2, 3, включается линейный контактор КМ2, и на статор М подается напряжение. Од­новременно включается КМ5, включающий катушку YA тормоз­ного электромагнита, который растормаживает вал АД. По­лучает питание реле времени КТЗ, обеспечивающее выдержку времени при динамическом торможении.

    Автоматический пуск в функции времени при переводе SA, например, в положение 3 происходит благодаря последова­тельному шунтированию пусковых ступеней контакторами КМЗ и КМ4. Выдержки времени на их включение обеспечиваются реле времени КТ1 и КТ2.

    Автоматическое динамическое торможение обеспечивается при переводе рукоятки SA в положение 0. При этом КМ2 и КМ5 отключаются, КМ1 включается, и на статор подается постоянное напряжение. По истечении выдержки времени торможения реле КТЗ отключается и отключает контактор КМ1. Одновременно катушка тормозного электромагнита YA теряет питание, осуществляется механическое торможение.

    Асинхронный ЭП с тиристорным регулятором напряжения

    На рис. 17.14 представлена типовая схема замкнутой (имеющей обратные связи) системы автоматического регу­лирования (САР) скорости вращения и тока АД крановых ЭП.

    Рис. 17.14. Типовая САР с АЭД и тиристорным регулятором напряжения

    ЭП включает АД с подключенными к цепи ротора пускорегулирующими сопротивлениями, тиристорный регулятор напряжения типа РСТ на тиристорах VS1VS6, систему импульсно-фазового управления (СИФУ) ими и цепи обратных связей.

    Реверсирование АД осуществляется контакторами КМ1, КМ2, а вал двигателя тормозится и фиксируется посредством тормозного электромагнита YB. Расширение диапазона регулирования достигается применением пускорегулирующих со­противлений, коммутируемых контакторами КМЗ и КМ4.

    Замкнутая САР с тиристорным регулятором напряжения АД имеет обратные связи (ОС) по скорости (тахогенератор BR) и по току (трансформаторы тока ТА и блоки токоограничения УТО, блок нелинейности по току НТ, блок защиты по току МТ). Первая обеспечивает стабилизацию скорости — высокую жесткость характеристик во всем диа­пазоне регулирования, вторая — ограничение тока в пределах до 1,5 номинального.

    Напряжение управления с командоконтроллера КК подается на блок задания скорости БЗС. С него задающее напряжение, соответствующее заданному значению скорости АД, подается на узел сравнения, куда поступает также напряжение ОС по скорости. Результирующее напряжение управления подается на вход усилителей У1, РУ, У2. От напряжения У2 зависит фаза импульсов СИФУ, подаваемых на управляющие электроды тиристоров, и, следовательно, величина напряжения РСТ, по­даваемого на АД.

    Сигнал с блока логики поступает также на контакторы КМ1, либо КМ2, определяя направление вращения АД.

    Следящий электропривод с АД

    Следящим ЭП называют замкнутую САР, которая в соот­ветствии с произвольно изменяющимся законом управления с заданной точностью воспроизводит движение рабочего органа машины.

    Следящие ЭП включают, как правило, датчики входной и выходной величин, измеритель рассогласования, систему управ­ления исполнительным электродвигателем, который посредст­вом механической передачи связан с рабочим органом.

    Схема следящего ЭП с асинхронным двухфазным испол­нительным двигателем М представлена на рис. 17.15. Закон управления задается сельсином — датчиком СД и восприни­мается сельсином — приемником СП. Напряжение рассогла­сования U снимается со статора СП и поступает на вход фазочувствительного усилителя У1. Величина U пропорцио­нальна разности углов φ и φ, а фаза определяется знаком разности этих углов. Напряжения U или U запускают один из каналов СИФУ. Тиристоры VS1, VS2 и VS5, VS6 отпираются, на обмотки ОВ и ОУ подаются напряжения, пропорциональные сигналу рассогласования. Двигатель М вращается, уменьшая

    Рис. 17.15. Схема следящего ЭП с исполнительным двухфазным АД

    величину рассогласования. При включении VS3, VS4 М враща­ется в другую сторону. Таким образом, привод обеспечивает отработку произвольного угла рассогласования произвольного знака.

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector