Arskama.ru

Автомобильный журнал
7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Частота оборотов двигателя внутреннего сгорания

Частота оборотов двигателя внутреннего сгорания

В электромобилях потребление энергии — это количество киловатт-часов, затраченное на прохождение 100 километров (кВтч / 100 км). Как и в обычном автомобиле, на индикаторной панели можно видеть как расход в данный момент, так и средний расход. Кроме того, отображается количество возобновляемой энергии, возвращаемой в аккумулятор.

Поскольку основной и фактически единственной движущейся частью электродвигателя является ротор, потребность в техническом обслуживании также минимальна по сравнению с двигателем внутреннего сгорания. Нет необходимости менять масло двигателя или топливный либо воздушный фильтр. Поскольку электродвигатель обычно является высокоскоростной машиной, он должен быть правильно сконструирован (особенно подшипники), но в целом электроприводы требуют меньшего техобслуживания, чем обычные двигатели.

Да. При проектировании полных электромобилей предполагается, что в автомобиле нет других источников энергии и, следовательно, их наличие не нужно принимать во внимание. Вследствие этого двигатель может быть оптимально настроен на требуемый крутящий момент и мощность по оборотам и характеристикам транспортного средства. При конструировании гибридного привода, напротив, необходимо также учитывать характеристики двигателя внутреннего сгорания, работающего вместе с электродвигателем, уделяя основное внимание возможности механического соединения, рабочим температурам, частоте вращения и диапазону мощности. Система управления приводом также более сложная. Автомобиль должен быть способен двигаться только на электроэнергии, мощности двигателя внутреннего сгорания или в комбинированном режиме и всегда с оптимальным энергопотреблением.

«,»footnotes»:[]>,»images»:[]>]>]>,»resources»:null>» data-moduleid=»SpecificationModule_83f065c3-f651-4731-bd15-cfcf826cf925″ data-reactroot=»»>

ЭЛЕКТРОДВИГАТЕЛИ — ЧАВО

Чем действие электродвигателя отличается от действия двигателя внутреннего сгорания?

Кривые мощности и крутящего момента этих двигателей совершенно разные. Если мощность и крутящий момент двигателя внутреннего сгорания возрастают с увеличением скорости до пикового значения, то электродвигатель выдает максимальный крутящий момент при практически нулевой скорости, и он уменьшается до тех пор, пока не будет достигнута максимальная скорость. На практике это означает, что электромобили имеют лучшую «тягу» во время начала движения и, следовательно, относительно хорошую динамику. Кроме того, большой рабочий диапазон оборотов электродвигателя означает, что для него не требуется многоскоростная коробка передач или сцепление, и обычный электромобиль может управляться одной передачей — или редуктором замедления — от запуска до достижения максимальной скорости.

Как измеряется расход энергии?

В электромобилях потребление энергии — это количество киловатт-часов, затраченное на прохождение 100 километров (кВтч / 100 км). Как и в обычном автомобиле, на индикаторной панели можно видеть как расход в данный момент, так и средний расход. Кроме того, отображается количество возобновляемой энергии, возвращаемой в аккумулятор.

Как обстоит дело с техобслуживанием электродвигателя, каков срок его эксплуатации?

Поскольку основной и фактически единственной движущейся частью электродвигателя является ротор, потребность в техническом обслуживании также минимальна по сравнению с двигателем внутреннего сгорания. Нет необходимости менять масло двигателя или топливный либо воздушный фильтр. Поскольку электродвигатель обычно является высокоскоростной машиной, он должен быть правильно сконструирован (особенно подшипники), но в целом электроприводы требуют меньшего техобслуживания, чем обычные двигатели.

Различаются ли чем-либо электродвигатели плагин-гибридов и полных электромобилей?

Да. При проектировании полных электромобилей предполагается, что в автомобиле нет других источников энергии и, следовательно, их наличие не нужно принимать во внимание. Вследствие этого двигатель может быть оптимально настроен на требуемый крутящий момент и мощность по оборотам и характеристикам транспортного средства. При конструировании гибридного привода, напротив, необходимо также учитывать характеристики двигателя внутреннего сгорания, работающего вместе с электродвигателем, уделяя основное внимание возможности механического соединения, рабочим температурам, частоте вращения и диапазону мощности. Система управления приводом также более сложная. Автомобиль должен быть способен двигаться только на электроэнергии, мощности двигателя внутреннего сгорания или в комбинированном режиме и всегда с оптимальным энергопотреблением.

Моделирование системы автоматического регулирования частоты вращения дизельного двигателя

Рассмотрена актуальная проблема улучшения качества процесса регулирования частоты вращения коленчатого вала дизельных двигателей. Описаны принципы регулирования этого параметра, реализуемые в двигателях внутреннего сгорания. Показаны преимущества пропорционально-интегрально-дифференциального принципа регулирования. Проведены расчетные исследования влияния структуры пропорционально-интегрально-дифференциального регулятора на динамические показатели системы автоматического регулирования частоты вращения дизеля. Исследованы переходные процессы разгона–торможения и наброса–сброса нагрузки двигателя КамАЗ-740 дизель-генераторной установки мощностью 100 кВт. Получены переходные процессы такой системы регулирования при различных значениях коэффициентов пропорциональной, интегральной и дифференциальной составляющих пропорционально-интегрально-дифференциального закона регулирования. Выполнена оценка влияния этих коэффициентов на показатели качества процесса регулирования — продолжительность переходного процесса и перерегулирование.

Читать еще:  Шум при 2000 оборотах двигателя

Литература

[1] Системы управления дизельными двигателями. Москва, Изд-во «За рулем», 2004. 480 с.

[2] Системы управления бензиновыми двигателями. Москва, Изд-во «За рулем», 2005. 432 с.

[3] Александров А.А., Иващенко Н.А., ред. Машиностроение. Энциклопедия. Том IV. Двигатели внутреннего сгорания. Москва, Машиностроение, 2013. 784 с.

[4] Грехов Л.В., Иващенко Н.А., Марков В.А. Системы топливоподачи и управления дизелей. Москва, Легион-Автодата, 2005. 344 с.

[5] Пинский Ф.И., Давтян Р.И., Черняк Б.Я. Микропроцессорные системы управления автомобильными двигателями внутреннего сгорания. Москва, Изд-во «Легион-Автодата», 2001. 136 с.

[6] Крутов В.И. Автоматическое регулирование и управление двигателей внутреннего сгорания. Москва, Машиностроение, 1989. 416 с.

[7] Марков В.А., Фурман В.В., Бебенин Е.В. Совершенствование системы регулирования частоты вращения дизельного и газодизельного двигателей. Автогазозаправочный комплекс + альтернативное топливо, 2016, № 4, с. 12–29.

[8] Денисенко В.В. ПИД-регуляторы: принципы построения и модификации. Современные технологии автоматизации. Ч. 1, 2006, № 4, с. 66–74.

[9] Денисенко В.В. ПИД-регуляторы: принципы построения и модификации. Современные технологии автоматизации. Ч. 2, 2007, № 1, с. 90–98.

[10] Денисенко В.В. ПИД-регуляторы: вопросы реализации. Современные технологии автоматизации, 2007, № 4, с. 86–97.

[11] Кутрубас В.А., Сычева Е.Е. Эффективный ПИД-регулятор. Промышленные АСУ и контроллеры, 2013, № 5, с. 60–65.

[12] Марков В.А., Поздняков Е.Ф., Шленов М.И. Система автоматического регулирования частоты вращения коленчатого вала дизеля. Автомобильная промышленность, 2007, № 10, с. 12–14.

[13] Боковиков А.Н., Кузнецов А.Г. Результаты полунатурного моделирования режимов работы автомобильного дизеля. Грузовик, 2009, № 12, с. 15–17.

[14] Хрящев Ю.Е., Тихомиров М.В., Епанешников Д.А. Алгоритмы управления двигателями внутреннего сгорания. Якутск, Изд-во ЯГТУ, 2014. 204 с.

[15] Пупков К.А., Егупов Н.Д., ред. Методы классической и современной теории автоматического управления. В 5 т. Т. 1. Математические модели, динамические характеристики и анализ систем автоматического управления. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2004. 656 с.

[16] Пупков К.А., Егупов Н.Д., ред. Методы классической и современной теории автоматического управления. В 5 т. Т. 5. Методы современной теории автоматического управления. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2004. 784 с.

[17] Шегал А.А. Применение программного комплекса Multisim для проектирования устройств на микроконтроллерах: лабораторный практикум. Екатеринбург, Изд-во УФУ, 2014. 118 с.

[18] Бесперстов Э.А. Исследование логических схем с использованием программного комплекса Multisim: лабораторный практикум. Санкт-Петербург, Изд-во БГТУ, 2006. 64 с.

[19] Поздняков Е.Ф. Анализ эффективности использования регулятора частоты вращения с последовательно включенными корректирующими звеньями в дизельном двигателе дизель-генераторной установки. Дис. … канд. техн. наук. Москва, МГТУ им. Н.Э. Баумана, 2009. 150 с.

[20] Боковиков А.Н. Использование турбокомпрессора с турбиной изменяемой геометрии для повышения экологических и экономических показателей дизеля. Дис. … канд. техн. наук. Москва, МГТУ им. Н.Э. Баумана, 2011. 171 с.

[21] Попов Е.П. Теория линейных систем автоматического регулирования и управления. Москва, Наука, 1989. 304 с.

[22] Попов Е.П. Теория нелинейных систем автоматического регулирования и управления. Москва, Наука, 1988. 256 с.

[23] ГОСТ Р 55231–2012. Системы автоматического регулирования частоты вращения (САРЧ) судовых, тепловозных и промышленных двигателей внутреннего сгорания. Общие технические условия. Москва, Изд-во Стандартов, 2012. 14 с.

[24] Системы управления дизельными двигателями. Москва, Изд-во «За рулем», 2004. 480 с.

[25] Системы управления бензиновыми двигателями. Москва, Изд-во «За рулем», 2005. 432 с.

[26] Александров А.А., Иващенко Н.А., ред. Машиностроение. Энциклопедия. Том IV. Двигатели внутреннего сгорания. Москва, Машиностроение, 2013. 784 с.

[27] Грехов Л.В., Иващенко Н.А., Марков В.А. Системы топливоподачи и управления дизелей. Москва, Легион-Автодата, 2005. 344 с.

[28] Пинский Ф.И., Давтян Р.И., Черняк Б.Я. Микропроцессорные системы управления автомобильными двигателями внутреннего сгорания. Москва, Изд-во «Легион-Автодата», 2001. 136 с.

[29] Крутов В.И. Автоматическое регулирование и управление двигателей внутреннего сгорания. Москва, Машиностроение, 1989. 416 с.

[30] Марков В.А., Фурман В.В., Бебенин Е.В. Совершенствование системы регулирования частоты вращения дизельного и газодизельного двигателей. Автогазозаправочный комплекс + альтернативное топливо, 2016, № 4, с. 12–29.

[31] Денисенко В.В. ПИД-регуляторы: принципы построения и модификации. Современные технологии автоматизации. Ч. 1, 2006, № 4, с. 66–74.

[32] Денисенко В.В. ПИД-регуляторы: принципы построения и модификации. Современные технологии автоматизации. Ч. 2, 2007, № 1, с. 90–98.

Читать еще:  Чистка двигателя от нагара чем

[33] Денисенко В.В. ПИД-регуляторы: вопросы реализации. Современные технологии автоматизации, 2007, № 4, с. 86–97.

[34] Кутрубас В.А., Сычева Е.Е. Эффективный ПИД-регулятор. Промышленные АСУ и контроллеры, 2013, № 5, с. 60–65.

[35] Марков В.А., Поздняков Е.Ф., Шленов М.И. Система автоматического регулирования частоты вращения коленчатого вала дизеля. Автомобильная промышленность, 2007, № 10, с. 12–14.

[36] Боковиков А.Н., Кузнецов А.Г. Результаты полунатурного моделирования режимов работы автомобильного дизеля. Грузовик, 2009, № 12, с. 15–17.

[37] Хрящев Ю.Е., Тихомиров М.В., Епанешников Д.А. Алгоритмы управления двигателями внутреннего сгорания. Якутск, Изд-во ЯГТУ, 2014. 204 с.

[38] Пупков К.А., Егупов Н.Д., ред. Методы классической и современной теории автоматического управления. В 5 т. Т. 1. Математические модели, динамические характеристики и анализ систем автоматического управления. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2004. 656 с.

[39] Пупков К.А., Егупов Н.Д., ред. Методы классической и современной теории автоматического управления. В 5 т. Т. 5. Методы современной теории автоматического управления. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2004. 784 с.

[40] Шегал А.А. Применение программного комплекса Multisim для проектирования устройств на микроконтроллерах: лабораторный практикум. Екатеринбург, Изд-во УФУ, 2014. 118 с.

[41] Бесперстов Э.А. Исследование логических схем с использованием программного комплекса Multisim: лабораторный практикум. Санкт-Петербург, Изд-во БГТУ, 2006. 64 с.

[42] Поздняков Е.Ф. Анализ эффективности использования регулятора частоты вращения с последовательно включенными корректирующими звеньями в дизельном двигателе дизель-генераторной установки. Дис. … канд. техн. наук. Москва, МГТУ им. Н.Э. Баумана, 2009. 150 с.

[43] Боковиков А.Н. Использование турбокомпрессора с турбиной изменяемой геометрии для повышения экологических и экономических показателей дизеля. Дис. … канд. техн. наук. Москва, МГТУ им. Н.Э. Баумана, 2011. 171 с.

[44] Попов Е.П. Теория линейных систем автоматического регулирования и управления. Москва, Наука, 1989. 304 с.

[45] Попов Е.П. Теория нелинейных систем автоматического регулирования и управления. Москва, Наука, 1988. 256 с.

[46] ГОСТ Р 55231–2012. Системы автоматического регулирования частоты вращения (САРЧ) судовых, тепловозных и промышленных двигателей внутреннего сгорания. Общие технические условия. Москва, Изд-во Стандартов, 2012. 14 с.

Турбокомпрессоры и нагнетатели для ДВС

Системы наддува, сжимающие воздух, подаваемый в камеру сгорания двигателя, и увеличивающие массу этого воздуха, позволяют повысить мощность двигателя при данных рабочем объеме и частоте вращения коленчатого вала.

Системы наддува, сжимающие воздух, подаваемый в камеру сгорания двигателя, и увеличивающие массу этого воздуха, позволяют повысить мощность двигателя при данных рабочем объеме и частоте вращения коленчатого вала.

Для двигателей внутреннего сгорания применяются компрессоры (нагнетатели) трех видов: нагнетатели с механическим приводом, турбокомпрессоры, приводимые в действие отработавшими газами, и нагнетатели, использующие волну сжатия газов.
Нагнетатели с механическим приводом сжимают воздух, используя мощность, снимаемую с коленчатого вала двигателя (механическая муфта соединяет двигатель и нагнетатель), в то время как турбокомпрессор приводится в действие отработавшими газами.
Хотя нагнетатель, использующий для своей работы волну сжатия газов, также использует отработавшие газы, он требует вспомогательного механического привода (комбинация механической и гидравлической муфт).

Нагнетатели с механическим приводом
Применяются два вида таких нагнетателей: центробежные и с принудительным приводом рабочих элементов (объемные).

Центробежный нагнетатель во многом подобен турбокомпрессору, приводимому в действие отработавшими газами. Он, очень эффективен и позволяет получать лучшее соотношение между размерами устройства и его производительностью. Однако для создания необходимого давления требуются большие окружные скорости. Так как ведомый шкив привода относительно ведущего шкива вращается с недостаточной скоростью (передаточное отношение 2:1), то для получения необходимой окружной скорости следует использовать одноступенчатую планетарную передачу с передаточным отношением 15:1. Кроме того, в схему нагнетателя должен быть включен блок трансмиссии для изменения частоты вращения, если требуется поддержание давления на приемлемом постоянном уровне в широком диапазоне значений объемного расхода. Необходимость использования предельных частот вращения и других параметров, связанных с передачей мощности в приводе, означает, что область возможного применения центробежных нагнетателей ограничена дизелями среднего и большого рабочих объемов и бензиновыми двигателями для легковых автомобилей.

Объемные нагнетатели с внутренним сжатием содержат поршень, движущийся возвратно-поступательно, винт, ротор и компрессор с подвижными лопатками. Пример нагнетателя без внутреннего сжатия воздуха — нагнетатель типа Roots. Характеристики такого нагнетателя приведены на графике.
Зависимость отношения давлений p2/p1 от объемного расхода V указывает, согласно графику, на то, что увеличение этого отношения сопровождается только незначительным уменьшением объемного расхода воздуха V. Падение объемного расхода в основном зависит от эффективности уплотнения зазора (потери на утечки) и является функцией отношения p2/p1 и времени, но не зависит от частоты вращения вала компрессора.
Отношение давлений p2/p1 не зависит от частоты вращения. То есть высокие значения этого отношения могут быть получены и при низких объемных расходах.
Объемный и массовый расходы не зависят от соотношения давлений и, в первом приближении, прямо пропорциональны частоте вращения.
Производительность нагнетателя остается неизменной во всем его рабочем диапазоне. Объемный нагнетатель .работает на всех точках кривой p2/p1-V.
В нагнетателе типа Roots два симметричных ротора вращаются в корпусе без непосредственного контактирования между собой или с корпусом; размер периферийного зазора определяется конструкцией корпуса, используемым материалом и производственными допусками: Внешняя шестеренчатая передача синхронизирует вращение роторов.

Читать еще:  Чем плох двигатель умз 4216

Нагнетатель со скользящими лопатками имеет эксцентрично установленный ротор, воздействующий на три смонтированные по центру скользящие лопатки, которые обеспечивают сжатие воздуха. Давление сжатия при данной степени эксцентриситета ротора регулируется изменением положения кромки выходного окна А в корпусе нагнетателя.

Электронный регулятор частоты вращения двигателя (актуатор)

  • Главная
  • Каталог
    • Дизельные электростанции ДЭС (АД) ДГУ мощностью 12-440 кВт
    • Дизельные электростанции ДЭС (АД) ДГУ в контейнере и под капотом
    • Двигатели ЯМЗ, ТМЗ, ММЗ, применяемые в ДЭС (АД) ДГУ мощностью 12-440 кВт
    • Автоматизация дизельных электростанций
    • Генераторы синхронные модели Marelli Motori, Linz Electric, Stamford, Leroy Somer, БГ
    • Кунги кузов фургоны на шасси для установки ДЭС (АД) ДГУ мощностью 12-440 кВт
  • Электростанции
    • Дизельные электроагрегаты АД
    • Дизельные электростанции ДЭС
    • Дизельные генераторы ДГУ
  • Газопоршневые
  • Фото
  • Ремонт
    • Сервисное обслуживание
    • Ремонт генераторов
  • Лизинг
  • Пусконаладка
  • Доставка
  • Цены
  • Контакты

Электронный регулятор оборотов GAC (Governors America Corp.)

Скачать документацию на ЭЛЕКТРОННЫЙ РЕГУЛЯТОР ОБОРОТОВ GAC

Цена ЭЛЕКТРОННЫЙ РЕГУЛЯТОР ОБОРОТОВ GAC различных вариантов исполнения

МодельИсполнениеЦена с
НДС 20%
электронныйактуатор100 000

Электронный регулятор оборотов GAC (Governors America Corp.)

РЕГУЛЯТОР ОБОРОТОВ GAC:

  • Электронный регулятор оборотов GAC (Governors America Corp.) в автоматическом режиме осуществляет регулировку оборотов двигателя, что позволяет улучшить топливную экономичность, увеличить моторесурс двигателя, повысить надежность в аварийных ситуациях, снизить токсичность отработанных газов, повысить качество вырабатываемой электрической энергии

Электронный регулятор предназначен для двигателей внутреннего сгорания используемых в составе:

  • дизельных электростанций
  • силовых дизельных приводов и насосных установок (дополнительное оборудование) для одновременной (синхронной) работы нескольких установок Дизель-Систем

Актуаторы компании GAC обеспечивают высокую надёжность и точность регулирования для пропорционального распределения крутящего момента. Специально разработаны для установки на топливные насосы (ТНВД), чтобы обеспечить максимальную эффективность сервопривода. Поскольку конструкция актуаторов не имеет трущихся деталей и все компоненты герметично закрыты соответствующими уплотнениями, достигается высокая надежность и не требуется техническое обслуживание в процессе всего срока эксплуатации.

Актуаторы компании GAC для установки на двигателях имеют надёжную конструкцию для работы в условиях высоких температур и оптимально подходят для наружного размещения на двигателе. Поскольку конструкция актуаторов не имеет трущихся деталей и все компоненты герметично закрыты соответствующими уплотнениями, достигается высокая надежность и не требуется техническое обслуживание в процессе всего срока эксплуатации.

Универсальные актуаторы компании GAC являются электрическими сервоприводами пропорционального типа для механического управления дроссельной заслонкой или топливной рейкой ТНВД. Они обеспечивают оптимальный контроль подачи топлива и идеально подходят для внешнего размещения на корпусе двигателя. Поскольку конструкция актуаторов не имеет трущихся деталей и все компоненты герметично закрыты соответствующими уплотнениями, достигается высокая надежность и не требуется техническое обслуживание в процессе всего срока эксплуатации.

Регуляторы оборотов компании GAC обеспечивают точное регулирование оборотов двигателя. Они разработаны и производятся в различных конфигурациях для различных вариантов применения. При их разработке использованы передовые аналоговые и цифровые технологии контроля и управления. В каждом регуляторе предусмотрена защита от обратной полярности аккумулятора, а также обеспечивается надежная работа в случаях потери сигнала датчика оборотов или напряжения аккумулятора. Широкий спектр требований при различных вариантах применения обеспечивается постоянным или переменным регулированием оборотов при изохронных или переходных режимах работы двигателя. Все сетевые платы надежно герметизированы для защиты от вибраций и влажности.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector