Arskama.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чем регулировать скорость асинхронного двигателя

Скорость вращения двигателя регулирование

Как мы уже знаем из курса ТОЭ, частота вращения ротора определяется по формуле:

Синхронная частота вращения зависит от частоты приложенного напряжения и количества пар полюсов

Исходя из этого, можно сделать вывод, что изменять скорость асинхронных ЭД можно с помощью изменения скольжения, частоты и числа пар полюсов.

Способы регулирования бывают разные, например механические муфты, редукторы, различные шестерёнчатые трансмиссии или есть способ изменения количества полюсов обмоток ЭД. Но в рамках данной статьи поговорим о методах регулировки ЭД с помощью изменения электрических параметров: регулировки напряжения питания ЭД и настройки частоты питающего напряжения и с помощью изменения активного сопротивления в роторной цепи.

Данный метод регулирования скорости асинхронного ЭД широко используется в машинах с фазным ротором. При этом в роторную цепь подсоединяется дополнительный реостат, которым можно достаточно плавно увеличивать номинал сопротивления. С ростом сопротивления, скольжение ЭД увеличивается, а скорость вращения снижается. Т.е, происходит регулировка скорости вниз от естественной характеристики.

Огромным минусом этого метода является его экономическая неэффективность, т.к с ростом скольжения, потери в роторной цепи существенно увеличиваются, т.е, КПД двигателя стремительно падает.
Плюс к этому, механическая характеристика двигателя становится более мягкой и пологой, поэтому незначительное изменение момента нагрузки на валу ЭД, вызывает резкое изменение частоты вращения.

Регулирование скорости ЭД этим способом крайне не эффективно, но, несмотря на это факт, все еще используется в ЭД с фазным ротором.

Этот способ подразумевает включения в питающую цепь автотрансформатора (АТР), перед статорной обмоткой, после питающих проводов. При этом, если понизить уровень напряжения на выходе АТР, то ЭД будет работать на пониженном напряжении.

Это в свою очередь снизит частоты вращения, при постоянном моменте нагрузки, а также к снижению перегрузочной способности ЭД. Так как с снижением уровня питания, максимальный момент асинхронного ЭД снижается в квадрат раз. Кроме этого момент снижается быстрее, чем ток в рроторной цепи, а поэтому, увеличиваются и потери, с последующим нагревом ЭД.

Способ регулировки напряжения, возможен только по направлению вниз от естественной характеристики, так как повышать напряжение выше номинального уровня категорически не приветствуется, ведь это приведет к огромным потерям в двигателе, перегреву и неисправности.

Кроме АТР, можно использовать тиристорный регулятор напряжения и аналогичные схемотехнические решения, в том числе и с использованием микроконтроллеров.

При таком методе, к ЭД подсоединяют преобразователь частоты (ПЧ). Например Omron, Hitachi и т.п ,(например в флюорографе ФМЦ). В простых вариантах это тиристорный ПЧ. Регулировка скорости происходит с помощью регулировки частоты питающего напряжения f, потому, что она оказывает влияние на синхронную скорость вращения ЭД.

С снижением частоты , перегрузочная способность ЭД также снижается, чтобы этого не допустить, необходимо повысить величину напряжения U1. Номинал на который требуется повысить, зависит от типа привода. Если регулирование осуществляется с постоянным моментом нагрузки на валу, то напряжение требуется изменять пропорционально регулировки частоты (при снижении скорости). В случае увеличения скорости этого делать не стоит, напряжение должно быть на номинальных значениях, иначе это может причинить вред ЭД.

Если регулировка скорости осуществляется с постоянной мощностью электродвигателя, то изменение U1 требуется осуществлять пропорционально корню квадратному изменения f1.

При настройки установок с вентиляторной характеристикой, требуется регулировать U1 пропорционально квадрату изменения f1.

Регулирование способом изменения частоты, является наиболее лучшим вариантом для асинхронных двигателей на текущий момент, т.к при нем осуществляется регулирование скорости в достаточно широком диапазоне, без существенных потерь и падения перегрузочных способностей ЭД.

Обычно регулирование оборотов для двигателей на 220 вольт осуществляют с помощью тиристоров. Типовой схемой считается подсоединение электродвигателя в разрыв анодной цепи тиристора. Но во всех подобных схемах должен быть надежный контакт. И поэтому их нельзя применить в регулировании частоты вращения коллекторных двигателей, так как механизм щеток искусственно создает небольшие обрывы цепи.

Читать еще:  Чистка двигателя водородом что это

Такой метод возможен только в многоскоростных асинхронных ЭД с короткозамкнутым ротором, т.к число полюсов этого ротора, всегда совпадает с полюсами статора.

В соответствии с формулой в начале страницы, скорость ЭД можно настраивать и изменением числа пар полюсов. Причём, в данном случае изменение скорости будет ступенчато, т.к как количество полюсов бывает только – 1,2,3,4,5.

Изменение их числа достигается с помощью переключения катушечных групп обмотки статора. При этом катушки коммутируются различными схемами, например “звезда — звезда” или “звезда – двойная звезда”. При соединении “звезда — звезда” получается изменение количества полюсов в соотношении 2:1. При этом будет постоянная мощность двигателя при переключении. При схеме “звезда – двойная звезда” изменяется количество полюсов в таком же соотношении, но еще обеспечивается постоянный момент двигателя.

Применение этого метода регулирования оправдано сохранением КПД и коэффициента мощности при переключении. Серьезным недостатком способа является более сложная конструкция ЭД, а также увеличение его стоимости.

Чем регулировать скорость асинхронного двигателя

§ 110. Регулирование скорости вращения, реверсирование и торможение асинхронных двигателей

Скорость вращения ротора асинхронного двигателя определяется выражением

n = n(1 — S) =f1 ⋅ 60(1 — S).
p

Отсюда следует, что скорость асинхронного двигателя можно регулировать изменением какой-либо их трех величин:

числа пар полюсов p; частоты f1 тока питающей сети; скольжения S.

Изменение числа полюсов электродвигателя. Для возможности изменения числа пар полюсов двигателя статор его выполняют либо с двумя самостоятельными трехфазными обмотками, либо с одной трехфазной обмоткой, которую можно пересоединять на различные числа полюсов.

На рис. 265, а схематически показаны две катушки одной фазы, соединенные последовательно. Из чертежа видно, что катушки создают четыре магнитных полюса.


Рис. 265. Изменение числа пар полюсов на статоре электродвигателя

Те же две катушки, соединенные параллельно между собой, создадут уже только два полюса (рис. 265, б). Пересоединение обмоток статора производится при помощи специального аппарата — контроллера. При этом способе регулировка скорости вращения двигателя совершается скачками.

На практике встречаются двигатели, синхронные скорости вращения (n) которых могут быть равны 3000, 1500, 1000 и 750 оборотов в минуту.

Регулировку скорости вращения двигателя путем изменения числа полюсов можно производить только у асинхронных двигателей с короткозамкнутым ротором. Ротор с короткозамкнутой обмоткой может работать при разных числах полюсов магнитного поля. Наоборот, ротор двигателя с фазной обмоткой может нормально работать лишь при определенном числе полюсов поля статора. Иначе обмотку ротора также пришлось бы переключать, что внесло бы большие усложнения в схему двигателя.

Изменение частоты переменного тока. При этом способе частоту переменного тока, подводимого к обмотке статора двигателя, изменяют при помощи специального преобразователя частоты. Регулировку изменения частоты тока выгодно производить, когда имеется большая группа двигателей, требующих совместного плавного регулирования скорости вращения (рольганги, текстильные станки и т. п.). Этот способ регулирования скорости мало распространен ввиду сложности его осуществления.

Введение сопротивления в цепь ротора. Первые два способа регулировки скорости вращения асинхронного двигателя требуют или специального исполнения двигателя, или наличия специального преобразователя частоты и поэтому широкого распространения не получили.

Третий способ регулировки скорости вращения асинхронных двигателей состоит в том, что во время работы двигателя в цепь обмотки ротора вводят сопротивление регулировочного реостата.

Рассматривая рис. 256, на котором построены естественная и реостатная механические характеристики асинхронного двигателя, мы видим, что с увеличением активного сопротивления цепи ротора возрастает величина скольжения S, соответствующая заданному значению вращаемого момента М (величина вращающего момента, развиваемого двигателем, равна моменту сопротивления на валу двигателя). Таким образом, вводя дополнительно активное сопротивление в цепь фазного ротора, мы увеличиваем скольжение S и, следовательно, снижаем скорость вращения ротора n. Такой способ регулирования применим только для асинхронных двигателей с фазным ротором.

Читать еще:  Чего дымит двигатель ауди а4

Регулировочный реостат включают в цепь ротора так же, как и пусковой реостат. Разница между пусковым и регулировочным реостатом состоит в том, что регулировочный реостат рассчитан на длительное прохождение тока. Для двигателей, у которых производится регулировка скорости вращения путем изменения сопротивления в цепи ротора, пусковой и регулировочный реостаты объединяются в один пускорегулировочный реостат.

Недостатком этого способа регулирования является то, что в регулировочном реостате происходит значительная потеря мощности, тем большая, чем шире регулировка скорости вращения двигателя. На рис. 266 изображена схема включения асинхронного двигателя с пускорегулировочным реостатом.


Рис. 266. Схема включения асинхронного двигателя с пускорегулировочным реостатом

Реверсирование асинхронных двигателей. Для изменения направления вращения (реверсирование) асинхронного двигателя следует поменять местами два любых провода из трех, идущих к обмоткам статора двигателя. При этом меняется направление вращения магнитного поля статора и двигатель станет вращаться в другую сторону. Реверсирование двигателя может быть произведено при помощи переключателя (перекидного рубильника), магнитного пускателя и других устройств.

Торможение асинхронных двигателей. В условиях эксплуатации нередко возникает необходимость торможения двигателя с целью ускорить его остановку.

Торможение электрических двигателей может быть механическим, электромеханическим и электрическим. Электромеханическое торможение производится при помощи ленточного или колодочного тормоза, действующего на тормозной шкив, закрепленный на валу двигателя. Ослабление ленты или колодок осуществляется тормозным электромагнитом, обмотка которого соединена параллельно с обмоткой статора двигателя.

Если при работе двигателя переключить две любые фазы, то при этом двигатель начнет развивать вращающий момент, направленный в обратную сторону. Вращение ротора замедляется. Когда скорость вращения приближается к нулю, следует отключить двигатель от сети, в противном случае ротор под действием развиваемого момента начнет вращаться в противоположном направлении. Применяются и другие способы электрического торможения асинхронных двигателей.

Чем регулировать скорость асинхронного двигателя

Асинхронный двигатель является наиболее массовым электрическим двигателем. Эти двигатели выпускаются мощностью от 0,1 кВт до нескольких тысяч киловатт и находят применение во всех отраслях хозяйства. Основным достоинством асинхронного двигателя является простота его конструкции и невысокая стоимость. Однако по принципу своего действия асинхронный двигатель в обычной схеме включения не допускает регулирования скорости его вращения. Особое внимание следует обратить на то, что во избежание значительных потерь энергии, а, следовательно, для короткозамкнутых асинхронных двигателей во избежание перегрева его ротора, двигатель должен работать в длительном режиме с минимальными значениями скольжения.

Рассмотрим возможные способы регулирования скорости асинхронных двигателей (см. рис.1). Скорость двигателя определяется двумя параметрами: скоростью вращения электромагнитного поля статора ω0 и скольжением s:

Исходя из (1) принципиально возможны два способа регулирования скорости: регулирование скорости вращения поля статора и регулирование скольжения при постоянной величине ω0.

Скорость вращения поля статора определяется двумя параметрами (см.3.3): частотой напряжения, подводимого к обмоткам статора f1, и числом пар полюсов двигателя рп. В соответствии с этим возможны два способа регулирования скорости: изменение частоты питающего напряжения посредством преобразователей частоты, включаемых в цепь статора двигателя (частотное регулирование), и путем изменения числа пар полюсов двигателя.

Регулирование скольжения двигателя при постоянной скорости вращения поля статора для короткозамкнутых асинхронных двигателей возможно путем изменения величины напряжения статора при постоянной частоте этого напряжения. Для асинхронных двигателей с фазным ротором, кроме того, возможны еще два способа: введение в цепь ротора добавочных сопротивлений (реостатное регулирование) и введение в цепь ротора добавочной регулируемой э.д.с. посредством преобразователей частоты, включаемых в цепь ротора (асинхронный вентильный каскад и двигатель двойного питания).

В настоящее время благодаря развитию силовой преобразовательной техники созданы и серийно выпускаются различные виды полупроводниковых преобразователей частоты, что определило опережающее развитие и широкое применение частотно-регулируемого асинхронного электропривода. Основными достоинствами этой системы регулируемого электропривода являются:

  • плавность регулирования и высокая жесткость механических характеристик, что позволяет регулировать скорость в широком диапазоне;
  • экономичность регулирования, определяемая тем, что двигатель работает с малыми величинами абсолютного скольжения, и потери в двигателе не превышают номинальных.
Читать еще:  Что нужно чтобы сделать замену двигателя

Недостатками частотного регулирования являются сложность и высокая стоимость (особенно для приводов большой мощности) преобразователей частоты и сложность реализации в большинстве схем режима рекуперативного торможения.

Подробно принципы и схемы частотного регулирования скорости асинхронного двигателя рассмотрены ниже.

Изменение скорости переключением числа пар полюсов асинхронного двигателя позволяет получать несколько (от 2 до 4) значений рабочих скоростей, т.е. плавное регулирование скорости и формирование переходных процессов при этом способе невозможно.

Поэтому данный способ имеет определенные области применения, но не может рассматриваться, как основа для построения систем регулируемого электропривода.

Регулирование скорости вращения трехфазных асинхронных двигателей

§ 97. РЕГУЛИРОВАНИЕ СКОРОСТИ ВРАЩЕНИЯ ТРЕХФАЗНЫХ АСИНХРОННЫХ ДВИГАТЕЛЕЙ

Число оборотов ротора в минуту определяется следующим вы­ражением:

Из выражения (122) видно, что число оборотов ротора можно регулировать изменением любой из трех величин, определяющих число оборотов ротора, т. е.изменением частоты тока сети f1 числа пар полюсов р и скольжения S.

Регулирование скорости асинхронных двигателей изменением частоты тока сети сложно, так как необходим какой-либо регули­рующий преобразователь частоты или генератор. Поэтому такой способ не имеет широкого применения.

Изменение числа полюсов машины возможно либо выполнением на статоре нескольких (обычно двух) обмоток с различным числом полюсов, либо одной обмотки, допускающей переключение на Различное число полюсов. Может быть помещено на статоре две обмотки, каждая из которых допускает переключение на различное число полюсов.

На рис 120 а схематически показаны две катушки одной фазы, соединенные последовательно. Ток, протекая по ним, создает маг­нитное поле с четырьмя полюсами.

Если изменить направление тока в одной из катушек, включив ее встречно с другой, то обмотка будет создавать двухполюсное магнитное поле (рис. 120, б). При изменении числа полюсов обмот­ки статора изменится скорость вращения его магнитного поля, а следовательно, и скорость вращения ротора двигателя. Этот способ регулирования скорости асинхронного двигателя экономичен, но недостатком его является ступенчатое изменение скорости. Кроме того, стоимость такого двигателя значительно возрастает вследст­вие усложнения обмотки статора и увеличения габаритов машин. Регулирование скорости изменением числа полюсов применяет­ся в двигателях с короткозамкнутым ротором; в двигателях с кон­тактными кольцами этот способ не используется, так как здесь одновременно с изменением числа полюсов обмотки статора необ­ходимо в той же мере изменить число полюсов обмотки вращающе­гося ротора, что весьма сложно.

Заводы СССР выпускают двух-, трех- и четырехскоростные дви­гатели, например, на синхронные скорости вращения 500—750 — 1000—1500 об/мин. Такие двигатели имеют на статоре две обмотки, каждая из которых допускает переключение на различное число полюсов.

Изменить скольжение можно введением в цепь обмотки ротора регулировочного реостата, а также изменением напряжения сети. При изменении напряжения питающей сети изменяется вращаю­щий момент двигателя, пропорциональный квадрату напряжения. При уменьшении вращающего момента начнет уменьшаться число оборотов ротора, т. е. увеличится скольжение.

Регулировочный реостат включается в цепь обмотки фазного ротора подобно пусковому реостату, но в отличие от пускового этот, реостат рассчитывается на длительное прохождение тока.

При включении регулировочного реостата сила тока в роторе уменьшится, что вызовет уменьшение вращающего момента двигателя и, следовательно, уменьшение скорости вращения или увеличение скольжения. При увеличении скольжения увеличивается э. д. с и ток в роторе. Скорость вращения или скольжения будет изменяться до восстановления равновесия моментов, т. е. пока сила тока в роторе не примет своего начального значения.

Этот способ регулирования скорости вращения может быть использован только в двигателях с фазным ротором и, несмотря на то, что является неэкономичным (так как в регулировочном реостате происходит значительная потеря энергии), имеет широкой применение.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector