Arskama.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Число оборотов двигателей переменного тока

Число оборотов двигателей переменного тока

Любой намагниченный предмет, помещенный в центр круга, будет пытаться вращаться с той же угловой частотой, что и магнитное поле. Синхронный двигатель переменного тока использует этот принцип, когда его намагниченный ротор движется с точно той же скоростью, что и магнитное поле.

В любом электропроводящем предмете (проводнике), помещенном в центр круга, будет возникать индукция при изменении направления магнитного поля вокруг этого проводника. Поле будет индуцировать электрические токи внутри проводника, которые, в свою очередь, будут действовать против вращающегося магнитного поля таким образом, что предмет будет «гнаться» за полем, всегда чуть отставая. Индукционный двигатель переменного тока работает по этому принципу, когда его ненамагниченный (но электропроводящий) ротор вращается со скоростью немного меньшей, чем синхронная скорость* вращающегося магнитного поля.
*Разность этих скоростей называется скоростью скольжения, в русскоязычной литературе применяется термин скольжение, определяющий относительную разность.

Скорость вращения магнитного поля прямо пропорциональна частоте источника переменного тока и обратно пропорциональна числу полюсов в статоре:

S – синхронная скорость вращающегося магнитного поля в оборотах в минуту
f – частота в герцах
n – число полюсов статора на одно фазу (простейший возможный индукционный двигатель имеет два полюса)

Отношение между синхронной скоростью, частотой и числом полюсов можно понять по аналогии с «бегущими огоньками»: скорость каждого огонька в гирлянде – это функция частоты мигания и числа лампочек на единицу длины. Если число лампочек удвоить, расположив дополнительные лампочки между имеющимися (так чтобы длина гирлянды не изменилась), видимая скорость сократится вдвое: с сокращением расстояния между парами лампочек потребуется больше циклов («миганий») чтобы «пробежать» гирлянду первоначальной длины. Таким же образом, статор с бОльшим числом полюсов на его окружности требует бОльшего числа циклов от источника питания для совершения магнитным полем полного оборота.

Синхронный двигатель переменного тока вращается с точно такой же скоростью, что и магнитное поле: пример из практики – четырехполюсный синхронный двигатель, вращающийся с 1800 оборотами в минуту с приложенным питанием частотой 60 Гц. Индукционный двигатель будет вращаться немного медленней магнитного поля: например, индукционный двигатель вращающийся с 1720 об/мин при питающей частоте 60 Гц (т.е. 80 об/мин – скорость скольжения). Индукционные двигатели проще в производстве и обслуживании, что делает их наиболее популярными из двух типов двигателей, применяемых в промышленности.

В случае когда при производстве статора двигателя число обмоток фиксировано*, частоту источника питания мы можем изменять при помощи электронной схемы. Высокомощная схема, разработанная для изменения частоты питания двигателей переменного тока называется частотным преобразователем (ЧП), а вместе с самим двигателем — частотно-регулируемым приводом (ЧРП).
* существуют многоскоростные двигатели с выбираемым числом полюсов. Например, двигатель с дополнительным числом обмоток статора, который подключается по 4-полюсной схеме для высокой скорости, и по 8-полюсной для низкой. Если нормально нагруженный двигатель имеет на «высокой скорости» 1740 об/мин, то на «низкой» в два раза меньше – 870 об/мин. При фиксированной частоте питания этот двигатель будет иметь только две возможные скорости

Частотно-регулируемые приводы крайне полезны, они позволяют обычному двигателю с фиксированным числом полюсов обеспечивать необходимую мощность в широком диапазоне скоростей. К достоинствам ЧРП следует отнести уменьшение электропотребления (двигатель вращается так быстро как это требуется, а не на полную), уменьшение вибрации (меньше скорость=меньше вибрация, хотя существуют и резонансные явления), возможность плавного разгона и торможения для сокращения износа механических составляющих в результате ускоряющих сил.

Другой чертой, присущей большинству частотно-регулируемых приводов является возможность активного торможения нагрузки — это когда ЧРП заставляет двигатель прикладывать отрицательный момент к нагрузке для её замедления. Некоторые частотные преобразователи для энергосбережения позволяют рекуперировать кинетическую энергию в течение процесса торможения.

Преобразователи частоты содержат электронные компоненты преобразующие входное переменное питание с постоянной частотой в выходное с переменной частотой (и напряжением). В преобразователе обычно имеется три различных блока. Выпрямитель использует диоды для преобразования переменного напряжения в постоянное. Фильтр сглаживает выпрямленное напряжение, т.к. оно имеет пульсации. И наконец, инвертор преобразует отфильтрованное постоянное напряжение обратно в переменное, только на этот раз с уровнями напряжения и частоты необходимыми для желаемой скорости вращения двигателя.

Упрощенная схема для частотного преобразователя показана ниже, выпрямитель слева (преобразует переменное напряжение в постоянное), фильтрующий конденсатор сглаживает выпрямленное напряжение, и транзисторный мост превращает постоянное напряжение в переменное с необходимой частотой*. Схема управления транзисторами опущена для упрощения:

*Обратите внимание на обратно-включенные диоды между стоком и истоком каждого из транзисторов. Эти диоды служат для защиты транзисторов от обратного напряжения, но они также позволяют двигателю «возвращать» энергию назад в шину постоянного тока (действуя как генератор) когда скорость вращения двигателя превышает скорость вращения магнитного поля, что может происходить когда привод дает двигателю команду на останов. При добавлении некоторых компонентов это приводит к некоторым интересным возможностям, таким как регенеративное торможение.

Как и в приводах двигателей постоянного тока, силовые транзисторы в частотных преобразователях быстро включаются и отключаются с меняющейся скважностью. Однако в отличии от приводов постоянного тока, переключения силовых транзисторов в преобразователях частоты должны быть очень быстрыми чтобы синтезировать синусоиду переменного тока из постоянного, получаемого с шины после выпрямителя. В электронных схемах приводов постоянного тока скважность ШИМ определяет текущую мощность двигателя, и поэтому она остаётся постоянной пока от двигателя требуется постоянная мощность. Но с частотными преобразователями дела обстоят иначе: коэффициент заполнения (величина, обратная к скважности) должен изменяться от нуля до максимума и обратно до нуля, генерируя таким образом ток синусоидальной формы для работы двигателя.

Читать еще:  Двигатель i30 что это

Соответствие между генерируемым быстроменяющимся ШИМ-сигналом и синусоидой показано на рисунке:

Частотно-регулируемые приводы двигателей переменного тока не требуют обратной связи по скорости, которая необходима приводам для регулирования скорости двигателей постоянного тока. Причина этого очень проста: управляемой переменной в приводах переменного тока является частота питания двигателя, а вращаемые магнитным полем двигатели по своей природе являются частотно-управляемыми машинами.

Например, четырехполюсный индукционный двигатель, питаемый частотой 60 Гц, имеет номинальную скорость 1728 об/мин (при условии 4% скольжения). Если ЧРП выдает на двигатель переменный ток частотой 30 Гц, то скорость этого двигателя будет приблизительно равна половине номинального значения или 864 об/мин. Двигателю переменного тока действительно не требуется обратная связь от датчика скорости, потому что реальная скорость двигателя всегда будет ограничена выходной частотой привода. Управление частотой – это управление скоростью двигателя для синхронных и индукционных двигателей переменного тока, поэтому обратная связь от тахогенератора не является необходимой для того, чтобы приблизительно* «узнать» как быстро крутится двигатель. Отсутствие необходимости обратной связи по скорости для приводов переменного тока устраняет потенциальную угрозу безопасности, общую для всех приводов постоянного тока: вероятность «выбега» в случае потери приводом сигнала обратной связи от датчика скорости, при котором на двигатель подается полная мощность.

Как и с приводами постоянного тока, цепи ЧРП являются источниками мощного электрического шума. Прямоугольные импульсы, создаваемые быстрыми переключениями силовых полупроводниковых устройств, эквивалентны бесконечным рядам высокочастотных синусоидальных волн (эту эквивалентность, известную как ряды Фурье, математически доказал Жан Батист Жозеф Фурье (1768-1830)), некоторые из которых могут иметь достаточно высокую частоту для самостоятельного распространения в пространстве в виде электромагнитных волн. Эти электромагнитные помехи могут быть довольно интенсивными в случае высокомощных цепей промышленных приводов. По этой причине настоятельно не рекомендуется прокладывать любые силовые моторные кабели или кабели, питающие переменным током схемы приводов, рядом с сигнальными или управляющими проводами, т.к. создаваемый шум будет нарушать работу любых систем, использующих эти низкоуровневые сигналы.

Электромагнитный шум от силовых кабелей переменного тока может быть уменьшен пропусканием переменного тока через цепи низкочастотных фильтров, называемых сетевыми дросселями, расположенных вблизи привода. Эти сетевые дроссели, содержащие катушки индуктивности с ферромагнитными сердечниками, соединенные последовательно с приводом, блокируют высокочастотный шум, не давая ему вернуться назад к источнику переменного тока, где он может оказать влияние на другое электронное оборудование. Меньшее, что может быть сделано с электромагнитным шумом между приводом и двигателем — это экранирование кабелей хорошо заземленным кабелепроводом.

Частота вращения: формула

При проектировании оборудования необходимо знать число оборотов электродвигателя. Для расчёта частоты вращения есть специальные формулы, различные для двигателей переменного и постоянного напряжения.

Синхронные и асинхронные электромашины

Двигатели переменного напряжения есть трёх типов: синхронные, угловая скорость ротора которых совпадает с угловой частотой магнитного поля статора; асинхронные – в них вращение ротора отстаёт от вращения поля; коллекторные, конструкция и принцип действия которых аналогичны двигателям постоянного напряжения.

Синхронная скорость

Скорость вращения электромашины переменного тока зависит от угловой частоты магнитного поля статора. Эта скорость называется синхронной. В синхронных двигателях вал вращается с той же быстротой, что является преимуществом этих электромашин.

Для этого в роторе машин большой мощности есть обмотка, на которую подаётся постоянное напряжение, создающее магнитное поле. В устройствах малой мощности в ротор вставлены постоянные магниты, или есть явно выраженные полюса.

Скольжение

В асинхронных машинах число оборотов вала меньше синхронной угловой частоты. Эта разница называется скольжение «S». Благодаря скольжению в роторе наводится электрический ток, и вал вращается. Чем больше S, тем выше вращающий момент и меньше скорость. Однако при превышении скольжения выше определённой величины электродвигатель останавливается, начинает перегреваться и может выйти из строя. Частота вращения таких устройств рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • f – частота сети,
  • p – число пар полюсов,
  • s – скольжение.

Формула расчёта скорости асинхронного двигателя

Такие устройства есть двух типов:

  • С короткозамкнутым ротором. Обмотка в нём отливается из алюминия в процессе изготовления;
  • С фазным ротором. Обмотки выполнены из провода и подключаются к дополнительным сопротивлениям.

Регулировка частоты вращения

В процессе работы появляется необходимость регулировки числа оборотов электрических машин. Она осуществляется тремя способами:

  • Увеличение добавочного сопротивления в цепи ротора электродвигателей с фазным ротором. При необходимости сильно понизить обороты допускается подключение не трёх, а двух сопротивлений;
  • Подключение дополнительных сопротивлений в цепи статора. Применяется для запуска электрических машин большой мощности и для регулировки скорости маленьких электродвигателей. Например, число оборотов настольного вентилятора можно уменьшить, включив последовательно с ним лампу накаливания или конденсатор. Такой же результат даёт уменьшение питающего напряжения;
  • Изменение частоты сети. Подходит для синхронных и асинхронных двигателей.

Внимание! Скорость вращения коллекторных электродвигателей, работающих от сети переменного тока, не зависит от частоты сети.

Двигатели постоянного тока

Кроме машин переменного напряжения есть электродвигатели, подключающиеся к сети постоянного тока. Число оборотов таких устройств рассчитывается по совершенно другим формулам.

Номинальная скорость вращения

Число оборотов аппарата постоянного тока рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • U – напряжение сети,
  • Rя и Iя – сопротивление и ток якоря,
  • Ce – константа двигателя (зависит от типа электромашины),
  • Ф – магнитное поле статора.
Читать еще:  Что такое бугель коленвала в двигателе

Эти данные соответствуют номинальным значениям параметров электромашины, напряжению на обмотке возбуждения и якоре или вращательному моменту на валу двигателя. Их изменение позволяет регулировать частоту вращения. Определить магнитный поток в реальном двигателе очень сложно, поэтому для расчетов пользуются силой тока, протекающего через обмотку возбуждения или напряжения на якоре.

Формула расчёта числа оборотов двигателя постоянного тока

Число оборотов коллекторных электродвигателей переменного тока можно найти по той же формуле.

Регулировка скорости

Регулировка скорости электродвигателя, работающего от сети постоянного тока, возможна в широких пределах. Она возможна в двух диапазонах:

  1. Вверх от номинальной. Для этого уменьшается магнитный поток при помощи добавочных сопротивлений или регулятора напряжения;
  2. Вниз от номинальной. Для этого необходимо уменьшить напряжение на якоре электромотора или включить последовательно с ним сопротивление. Кроме снижения числа оборотов это делается при запуске электродвигателя.

Знание того, по каким формулам вычисляется скорость вращения электродвигателя, необходимо при проектировании и наладке оборудования.

Видео

Что следует учитывать при выборе асинхронного электродвигателя

При выборе асинхронных электродвигателей переменного тока часто не учитываются требования к конструкции, которые связаны с их применением в составе того или иного оборудования. Также обычно имеет место подход, основанный на универсальности электродвигателя, и тогда выбор зависит только от его напряжения, мощности и скорости вращения ротора. Тем не менее есть еще целый ряд дополнительных аспектов для рассмотрения, таких как диапазон напряжения питания, сохранение номинальной мощности при изменении скорости вращения и область применения. Все это в итоге сводится к решению следующих вопросов: какова цель применения электродвигателя, как сделать все быстрее и эффективнее?

Базовые принципы выбора электродвигателя

Отправными точками для выбора асинхронного двигателя являются напряжение питания обмоток статора, создающего магнитное поле, а также номинальная мощность и скорость вращения ротора, которые соответствуют требованиям конкретного применения. Еще один, не менее важный момент — это необходимый вариант установки двигателя в приводе. Должен ли двигатель иметь крепление на основании, или он будет помещен на фланец на конце привода, или же должен предоставлять обе возможности? Кроме того, необходимо учитывать характеристики окружающей среды, в которой будет эксплуатироваться двигатель. При этом для выбора двигателя необходимо знать, потребуется ли ему работать под дождем и имеется ли вообще риск попадания на него воды, а также оценить уровень загрязнения и наличия пыли. Для эксплуатации в жестких условиях хорошо подходят электродвигатели закрытого типа с вентиляторным охлаждением (англ. totally enclosed fan cooled, TEFC) или электродвигатели закрытого типа без охлаждения (англ. totally enclosed non-vented, TENV). Если среда, в которой будет использоваться двигатель, не загрязнена и он будет эксплуатироваться без риска попадания на него воды, то в этом случае может быть достаточно применения каплезащищенного электродвигателя открытого исполнения (англ. open drip proof, ODP).

Выбор инвертора

Благодаря усилиям лоббистов местных энергетических компаний в сочетании с преимуществами, получаемыми при возможности регулирования скорости вращения ротора двигателей, все более распространенными становятся частотно-регулируемые приводы (ЧРП, англ. variable frequency drive, VFD). При их использовании особое внимание следует уделять генерации электромагнитных помех, которая характерна для таких приводов исходя из самой их природы. Для того чтобы электродвигатель мог использоваться с ЧРП, необходимо учитывать несколько технических особенностей, которым должен удовлетворять подходящий по остальным характеристикам электродвигатель. Среди них можно выделить две главные:

Максимально допустимое напряжение изоляции обмоточных проводов статора электродвигателя.

Электрическая прочность изоляции провода, из которого выполнена обмотка статора асинхронного электродвигателя, находится в пределах 1000–1600 В, но, как правило, в документации указывается значение прочности изоляции, равное 1200 В. Однако чем больше воздушный зазор между приводом и двигателем, тем, естественно, бо́льшим скачкам переходного напряжения, воздействующим на двигатель, он может противостоять. Электродвигатель, в котором для обмотки статора используется провод с электрической прочностью изоляции провода, равной 1600 В, может иметь ссылку на стандарт Национальной ассоциации производителей электрооборудования (NEMA, США) NEMA MG-1 2003, раздел 4, параграф 31, в котором говорится, что двигатель должен выдерживать без повреждений начальное напряжение коронного разряда (англ. corona inception voltage, CIV) уровнем до 1600 В.

Коэффициент сохранения постоянного крутящего момента (CT) двигателя, часто упоминается как «xx: 1 CT».

Этот показатель дает представление о диапазоне регулирования скорости. По нему можно узнать, насколько может быть снижена скорость вращения ротора двигателя, при которой он будет работать с сохранением того же крутящего момента (англ. CT — constant torque, постоянный крутящий момент), что и при номинальной скорости. Ниже этого значения крутящего момента производительность асинхронного электродвигателя снижается.

Например, возьмем электродвигатель мощностью 10 л. с. с начальной скоростью 1800 об/мин. При номинальной скорости (около 1800 об/мин), как указано, он имеет крутящий момент 29 фунтов на фут. Если в спецификации на электродвигатель написано, что коэффициент сохранения номинальной мощности составляет 10:1 CT, это означает, что такой электродвигатель может обеспечить номинальный крутящий момент до скорости 180 об/мин. Если же указано, что электродвигатель имеет коэффициент сохранения номинальной мощности 1000:1 CT, то имеется в виду, что крутящий момент сможет сохранять номинальное значение до скорости 1,8 об/мин.

При этом необходимо учитывать еще один нюанс, который связан с охлаждением электродвигателя. Нужно обязательно уточнить у поставщика, будет ли электродвигатель перегреваться при длительной работе на малых оборотах. Дело в том, что если двигатель охлаждается за счет крыльчатки, закрепленной на его валу, то на малых скоростях вы столкнетесь с низкой скоростью охлаждающего двигатель потока воздуха. Если асинхронный электродвигатель работает на низкой скорости и в течение длительного времени используется с большим крутящим моментом, то он будет выделять много тепла — при таких условиях, возможно, придется остановить свой выбор на двигателе с иным методом охлаждения.

Читать еще:  Гудит гур при запуске двигателя

Например, для организации принудительного охлаждения можно применить воздуходувное устройство, имеющее собственный, отдельно управляемый двигатель. Производительность такого устройства не связана с системой управления электропривода. В этом случае воздушный поток, который обдувает мощный электродвигатель, будет постоянным и достаточным для его охлаждения при низкой или даже при нулевой скорости.

Связь мощности и крутящего момента

При выборе асинхронного электродвигателя еще одним важным аспектом является номинальная, или основная, скорость двигателя. Обычно используются двухполюсные (3600 об/мин) и четырехполюсные (1800 об/мин) электродвигатели. Однако имеются и коммерчески доступные 6-, 8- и 12-полюсные асинхронные электродвигатели со скоростью вращения ротора 1200, 900
и 600 об/мин соответственно. Номинальная скорость асинхронного электродвигателя напрямую связана с числом полюсов, которые такой двигатель конструктивно содержит (табл.), и определяется по следующей формуле:

Об/мин = (120 × частота) / N (число полюсов)

В качестве примечания необходимо отметить, что, хотя прямой связи здесь нет, но, как правило, с увеличением количества полюсов возрастают и размеры, а также стоимость электропривода.

Кроме того, пользователям электроприводов, в зависимости от области применения данных устройств, может понадобиться обеспечить необходимый крутящий момент путем изменения скорости. В целом по мере увеличения скорости двигателя крутящий момент уменьшается, что также относится к редукторам и цепным приводам. Это соотношение объясняется следующим уравнением:

мощность (л. с.) = (крутящий момент × × номинальная скорость) / 5252

Крутящий момент, в соответствии с заданной целью, может быть достигнут путем выбора электродвигателя с необходимой мощностью и номинальной скоростью и реализован через любую цепную, ременную передачу или редуктор. Такой подход снижает стоимость привода, его габаритные размеры и время, уходящее на замену его подвижных заменяемых частей в ходе выполнения ремонта или технического обслуживания.

Число полюсов, N

Скорость, об/мин

Крутящий момент,
л. с. / фут-фунт

ПРИМЕНЕНИЕ ПРИВОДОВ ПОСТОЯННОГО ТОКА ДЛЯ АВТОМАТИЗАЦИИ СОВРЕМЕННОЙ ПРОМЫШЛЕННОСТИ

Двигатели постоянного тока появились еще в конце 19 столетия и до сих пор используются в разных отраслях промышленности, несмотря на то, что были изобретены двигатели переменного тока, имеющие множество преимуществ.

«Жесткость» механической характеристики и простота управления двигателей постоянного тока.

Количество оборотов двигателя постоянного тока пропорционально величине напряжения, которое подается на якорную обмотку.
В диапазоне скоростей от нуля до номинального значения привод может развивать полный крутящий момент. Обладая такой довольно жесткой механической характеристикой, данные электродвигатели успешно используются в электроприводах лифтов, кранов, ленточных конвейеров, смесителей, экструдеров и многих других механизмов, где необходимо обеспечить большой момент при низких скоростях электродвигателя почти до его остановки при наличии полной нагрузки с последующим стартом.

Два основных рабочих режима двигателей постоянного тока

Двигатели постоянного тока имеют два режима работы:
1) рабочий режим с постоянным моментом, когда скорость двигателя пропорциональна напряжению, подаваемому на якорь, в диапазоне от нуля до номинальной скорости;

2) рабочий режим с постоянной мощностью. Его называют еще в диапазоне ослабления поля, когда скорость электродвигателя является обратно-пропорциональной напряжению возбуждения.

Первый рабочий режим используется в тех приводах, где существует необходимость работы при полной нагрузке на различных скоростях.

Второй режим применяют там, где требуется скорость выше номинальной, но при этом допускается снижение крутящего момента. Наиболее типичное применение – это различные намоточные устройства. Например, привод намоточного валка в бумагоделательной машине, работая в режиме ослабленного поля, при увеличении диаметра рулона будет снижать скорость намотки автоматически, поскольку нагрузка на электродвигатель будет увеличиваться. Таким образом обеспечивается плотность намотки и предотвращается обрыв.

Преимущества «маленьких» двигателей постоянного тока

Обычно, размеры двигателей постоянного тока намного меньше, чем размеры аналогичных асинхронных двигателей. У двигателей постоянного тока значительно меньше высота оси вращения и масса ротора. Следовательно, они имеют более низкий момент инерции ротора и это является их существенным преимуществом при высокодинамичных использованиях, таких как летучие ножницы, испытательные стенды и реверсивные приводы, поскольку требуется меньше времени для торможения и разгона. При использовании электродвигателей постоянного тока уменьшается время цикла работы производственной линии, что способствует увеличению ее производительности.

Большое количество инсталляций

На протяжении довольно длительного периода времени для регулировки скорости вала двигателя использовались только приводы постоянного тока. Следовательно, они имели широкое распространение и были установлены на огромном количестве различных машин, механизмов и оборудовании. Двигатели постоянного тока хорошо известны техникам и инженерам во всем мире и по ним накоплено довольно много информации. Тиристорные регуляторы являются менее сложными, чем преобразователи частоты, а также более ремонтопригодными. Очень часто, при усовершенствовании систем управления, замена устаревших приводов постоянного тока новыми современными приводами постоянного же тока, является экономически более выгодной.

Двигатели постоянного тока до сих пор остаются актуальными в ряде отраслей

Вопреки публикациям в СМИ и доводам производителей приводов переменного тока, существует еще немало таких применений, где приводы постоянного тока являются предпочтительными.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector