Чтение схем и подключение двигателя
Для чего нужны электрические схемы и каких типов они бывают
Существуют несколько различных типов электрических схем и любой грамотный электрик должен обязательно разбираться в том для чего они нужны, чем они друг от друга отличаются, какую информацию содержат, какие условные обозначения используются на разных схемах, как правильно их прочитать.
Очень часто люди путают термины «виды» и «типы» схем. По видам схемы подразделяют на электрические, пневматические, гидравлические и комбинированные. Комбинированные схемы наиболее распространены в проектах автоматизации различных технологических процессов, когда в проектах вместе с различными электрическими двигателями, аппаратами, датчиками одновременно используются элементы пневмоавтоматики и гидравлики. Такие схемы называют комбинированные электропневматические, электропневмогидравлические или электрогидравлические.
По типам все электрические схемы делят на функциональные, структурные, принципиальные, соединений и подключения (монтажные) и расположения. Существуют специальные типы схем, например схемы внешних электрических и трубных проводок, схемы прокладки кабелей. По ним выполняют монтаж и подключение проводок к электрооборудованию и средствам автоматизации.
Самый распространенный тип электрических схем — схемы электрические принципиальные. Они дают четкое понимание о работе установки, так как на таких схемах показывают все электрические цепи. На схемах электрических принципиальных условными обозначениями изображаются все электрические элементы, аппараты и устройства с учетом реальной последовательности их работы.
Если это схема какого либо станка, то отдельно показывается силовая часть схемы (электродвигатели и все аппараты, через которые они подключены) и схема управления. Все элементы на принципиальных схемах имеют буквенно-цифровые обозначения, которые выполняются согласно ГОСТ.
Схемы обычно дополняются различными диаграммами и таблицами переключения контактов, которые поясняют порядок срабатывания сложных элементов, например многопозиционных переключателей, временными диаграммами, показывающими последовательность срабатывания катушек реле.
На схеме может присутствовать спецификация с перечнем электрических аппаратов и других электротехнических устройств и элементов, входящих в схему, дополнительные поясняющие надписи. Прочитав принципиальную схему можно изучить и полностью разобраться как работает электрооборудование установки или станка.
Схемы электрические принципиальные могут быть выполнены совмещенным или разнесенным способом. Совмещенным способом обычно выполняют относительно несложные принципиальные схемы. Схемы в которых несколько двигателей и развитая схема управления в большинстве случаев выполняют разнесенным способом.
Отдельные элементы условных обозначений электрических аппаратов располагают в разных местах схемы, при этом увеличивается наглядность и упрощается чтение схем.
Для чтения принципиальных схем необходимо знать алгоритм функционирования схемы, понимать принцип действия приборов, аппаратов и систем автоматизации, на базе которых построена принципиальная схема.
По электрической принципиальной схеме выполняется проверка правильности электрических соединений при монтаже и наладке электрооборудования. Такие схемы незаменимы в эксплуатации и поиске неисправностей при проведении ремонта. Хотя я и встречал когда-то на заводе старых электриков работающих без схем (часто их просто не было), но это еще ни о чем не говорит. В этом случае людей выручало просто наличие опыта при обслуживании длительное время одних и тех же станков.
Если такого опыта нет, то поиск неисправностей даже в электрооборудовании станков относительно небольшой сложности может вызвать серьезные затруднения и растянуться на часы. Поэтому принципиальная электрическая схема это главная палочка-выручалочка любого электрика. Благодаря ей любую неисправность можно обнаружить и устранить в очень короткое время.
Используя электрические принципиальные схемы разрабатывают схемы соединений и подключения. По другому такие схемы в народе называют монтажные. Такие схемы показывают реальное расположение электродвигателей, электрических аппаратов и других элементов автоматизации на станке, в шкафах и на пультах управления. Все элементы на монтажных схемах выполняются аналогично по тем же ГОСТ, как и на схемах принципиальных.
Упрощенная схема соединений и подключения трехфазного двигателя с помощью двух магнитных пускателей:
Все провода на схеме соединения и подключения имеют имеют свой уникальный номер, который после монтажа реальной схемы наносится на провод. На таких схемах провода идущие в одном направлении часто объединяют в жгуты или пучки и показывают одной толстой линией. Все соединения проводов выполняются только на зажимах электрических аппаратов или с помощью специальных клеммников. Все соединения между частями отдельных шкафов и пультов управления выполняются тоже через клеммник, что значительно в дальнейшем облегчает обслуживания электрооборудования станков.
Если на принципиальных схемах отдельные элементы одного и того же аппарата могут находится в разных частях схемы, например, катушка пускателя — в цепях управления, а контакты в силовых цепях, то на схеме соединений и подключения все элементы того же пускателя показываются рядом. При этом выводы аппарата на схеме нумеруются таким же образом, как на реальном аппарате.
Например, для пускателя выводы катушки нумеруются — А — B , силовые контакт — 1-2, 3-4, 5-6, блокировочные 13-14. Это значительно облегчает монтаж электрооборудования. Человеку, который этим занимается не приходится думать где разместить сам аппарат (это уже показано на схеме) и куда какой провод подключать. Так как наличие номера на блокировочном контакте «13-14» говорит о том, что это контакт является нормально разомкнутым. Если бы контакт был нормально-замкнутым, то номер был бы «11-12».
Очень часто в паспортах станков схемы соединения и подключения показывают отдельно. На схемах подключения обозначают контуры станка или установки, основные элементы — двигатели, аппараты находящиеся на самом станке (путевые выключатели, датчики, электромагниты), шкафы и пульты управления, а также электрические проводки, которые это все связывают. Шкафы и пульты управления показывают пустыми контурами с клеммниками, на которые и приводят провода. А на схемах соединения изображают только какой-либо конкретный шкаф управления со всеми аппаратами, входящими в него и разводкой проводами. При этом, на схемах подключения упор делается на описание расположения и способов крепления проводов, жгутов, труб, электрических аппаратов и электродвигателей на самом станке.
Существует несколько вариантов выполнения схем соединения и подключения. Один из самых популярных способов в последнее время — это адресный метод. В этом методе провода на схемах не показывают, а только обозначают номерами около выводов электрических аппаратов. Хотя такую и схему и проще выполнить при использовании компьютерных программ, на мой взгляд, она получается существенно сложнее и часто приводит к ошибкам при монтаже.
Кроме электрических принципиальных и монтажных распространены структурные и функциональные схемы. Они помогают разобраться с общим принципом действия какого-либо сложного оборудования или отдельных элементов. Структурные схемы от функциональных отличаются тем, что в схемах первого типа определяются и обозначаются основные функциональные части устройства, а на на функциональных схемах объясняются процессы, которые в них протекают, т.е. разъясняется принцип работы устройства.
Например, такие схемы очень популярны при описании принципа работы сложных электронных устройств. В этом случае развернутая принципиальная схема может только запутать и испугать, особенно не опытных электриков, которые в большинстве своем очень бояться различной электроники. А так, разобравшись по структурной схеме из каких отдельных блоков состоит устройство, как эти блоки между собой взаимодействуют, поняв по функциональной схеме как работают конкретные блоки и элементы устройства и обратившись уже затем к проблемной части на принципиальной схеме, можно быстро решить любую возникшую проблему.
Существуют также объединенные схемы. На таких схемах может быть показаны схемы нескольких типов, например электрическая принципиальная и монтажная, или принципиальная и схема расположения. Структурная схема может быть совмещена с функциональной.
Автор статьи: Андрей Повный
P.S. Несколько примеров различных типов электрических схем.
Пример структурной (а) и функциональной схемы (б)
Чтение схем управления электроприводами
Для управления электрооборудованием силовых электрических цепей применяют различные устройства дистанционного управления, защиты, телемеханики и автоматики, воздействующие на его аппараты. Рассмотрим ряд схем управления асинхронными электродвигателями.
Схема управления нереверсивным электродвигателем
Принципиальная схема нереверсивного управления асинхронным электродвигателем, выполненная совмещенным и разнесенным способами, показана на рис. 1.
Рис. 1. Принципиальные схемы управления асинхронным двигателем: а − совмещенным способом; б, в − разнесенным способами
Элементы, составляющие схему управления; кнопки SВ1 и SВ2, контакты электротепловых реле КК1 и КК2, катушка магнитного пускателя КМ − образуют одну цепь, включенную между фазами С и А той же электрической сети, к которой подключен управляемый электродвигатель М.
Для включения электродвигателя М нажимают на кнопку SВ2, замыкающую цепь катушки магнитного пускателя КМ, который включается и замыкает свои силовые контакты и вспомогательный контакт, шунтирующий кнопку SВ2. Этим обеспечивается удержание магнитного пускателя во включенном положении после отпускания кнопки SВ2.
Для отключения электродвигателя М нажимают кнопку SВ1, размыкающую цепь катушки магнитного пускателя КМ. При перегрузке электродвигателя срабатывают электротепловые реле КК1 и КК2, размыкающие свои контакты в цепи управления, магнитный пускатель отключается и электродвигатель останавливается.
Электрические принципиальные схемы управления электродвигателями с помощью магнитных пускателей
На схемах рис. 2 — 4 показаны контакты пускателей КМ, нагревательные элементы тепловых реле КК, включенные в цепи питания электродвигателей, кнопочные элементы SB1 и SB2, катушки пускателей КМ, предохранители FU в цепях управления. В системах с глухозаземленной нейтралью питающей сети показан четвертый провод N как нулевой защитный проводник, присоединенный к корпусу электродвигателя; к этому проводу обычно присоединяются цепи управления и сигнализации для получения напряжения 220 В в этих цепях.
В схеме рис. 2 включение магнитного пускателя происходит при нажатии на кнопку SB1, когда катушка КМ пускателя будет под напряжением. После включения магнитного пускателя его вспомогательный замыкающий контакт КМ включается параллельно кнопочному элементу SB1, и кнопку можно отпустить.
Отключение магнитного пускателя можно произвести кнопкой SB2 «Стоп». Пускатель отключается автоматически:
при перерыве в электроснабжении (нулевая защита); при коротких замыканиях в питающей сети до М;
при срабатывании автоматического выключателя, который может быть установлен в цепи питания нескольких М;
при перегрузке М, когда срабатывает тепловое реле КК;
при коротком замыкании в цепи управления, когда перегорает предохранитель FU.
Рис. 2. Электрическая принципиальная схема магнитного пускателя с защитой одним двухфазным тепловым реле
Рис. 3. Электрическая принципиальная схема магнитного пускателя с защитой двумя однофазными тепловыми реле
Рис. 4. Электрическая принципиальная схема магнитного пускателя с применением реле максимального тока (реле устанавливается отдельно)
На схеме (рис. 2) показано двухфазное тепловое реле с одним размыкающим контактом КК. Отличием схемы на рис. 3 от схемы рис. 2 является применение в схеме рис. 3 двух однофазных тепловых реле КК1 и КК2 с двумя контактами в цепи управления.
На схеме рис. 4 показана цепь управления пускателем с применением реле максимального тока и силовая цепь электродвигателя, в одной фазе которой включено реле максимального тока КА, контакт которого есть в цепи управления. Применено двухфазное тепловое реле КК. Тепловые реле последних разработок являются трехфазными с одним размыкающим контактом.
Схема управления реверсивным электродвигателем
Теперь рассмотрим более сложную схему, предусматривающую реверсивное управление асинхронным электродвигателем с короткозамкнутым ротором. Такая схема показана на рис. 5.
Управление осуществляется контакторами КМ1 и КМ2 реверсивного магнитного пускателя. Цепи 1 управления и цепи 2 − 4 сигнальных ламп HLR1, HLR2 и HLG питаются от той же сети, что и электродвигатель М. В цепи 1 общими для участков катушки КМ1 первого контактора и катушки КМ2 второго контактора являются кнопка отключения SBT и контакты электротеплового реле КК.
При перегрузке электродвигателя срабатывают электротепловые реле КК1 и КК2, размыкающие свои контакты в цепи управления, контакты магнитного пускателя отключаются, и электродвигатель останавливается.
В исходном положении горит сигнальная лампа HLG, показывающая отключенное состояние обоих контакторов (ее цепь замкнута через их размыкающие контакты КМ1:3 и КМ2:3) и электродвигателя М.
Для включения электродвигателя М с вращением в другую сторону нажимают кнопку SBC2, и ее контакт SBC2:1 в цепи катушки контактора КМ2 замыкается, а контакт SBC2:2 в цепи катушки контактора КМ1 размыкается.
Контактор КМ2 при этом срабатывает, электродвигатель включается и начинает вращаться, но в другую сторону, поскольку чередование фаз, подводимых к его обмотке, изменяется: к выводам C1, С2 и С3 подводятся соответственно фазы А, С и В электрической сети (в первом же случае подводились фазы А, В и С).
Рис. 5. Принципиальная схема реверсивного управления асинхронным электродвигателем: а − силовой блок; б − блок управления
Для отключения электродвигателя нажимают кнопку SBT, разрывая тем самым цепь 1, в которую включены обмотки обоих контакторов. При перегрузке электродвигатель отключается электротепловым реле КК, контакт которого входит в цепь 1.
При срабатывании контактора КМ1 его вспомогательный контакт КМ1:2 замыкается, а КМ1:3 размыкается, лампа HLG, сигнализирующая об отключенном состоянии электродвигателя М, гаснет, а лампа НLR1 загорается, указывая, что двигатель М включен и вращается, например, «Вперед».
При срабатывании контактора КМ2 его вспомогательный контакт КМ2:2 замыкается, а КМ2:3 размыкается, лампа HLG гаснет, а лампа HLR2 загорается, указывая, что он включен и вращается в об- ратном направлении («Назад»).
Введение в цепь включения контактора КМ1 размыкающего кон- такта SBC2:2 кнопки включения контактора КМ2 и его вспомогательного контакта КМ2:4, а в цепь включения контактора КМ2 размыкающего контакта SBC1:2 кнопки включения контактора КМ1 и его вспомогательного контакта КМ1:4 обеспечивает электрическую блокировку.
Такая блокировка предотвращает одновременное включение обоих контакторов или включение одного из них при включенном состоянии другого, что может привести к короткому замыканию между фазами В и С электрической сети.
На рис. 6 приведена электрическая принципиальная схема управления реверсивным магнитным пускателем.
Рис. 6. Электрическая принципиальная схема реверсивного магнитного пускателя
На схеме показаны контакты пускателей КМВ (вперед) и КМН (назад), одноименные катушки и добавочные контакты. Для включения двигателя М вперед нужно нажать кнопку «Вперед» (SB1.1), и катушка пускателя КМВ будет под напряжением по цепи: предохранитель FU − кнопка «Стоп» (SB3) − контакты кнопочного элемента SB2.2 кнопки «Назад» (во избежание одновременного включения пускателей) − контакты кнопочного элемента SB1.1 кнопки «Вперед» − добавочные размыкающие контакты КМН пускателя КМН (во избежание одновременного включения пускателей) − катушка пускателя КМВ − контакты теплового реле КК − нулевой провод N (еcли катушка пускателя рассчитана на напряжение 220 В.
При напряжении катушки 380 В вместо присоединения к проводу N должно быть присоединение к проводу А или В). При включении пускателя его добавочный контакт КМВ включается параллельно кнопке SB1.1, и эту кнопку можно отпустить.
Схема Подключения Звезда Треугольник
Для обозначения проводников используют латинские буквы A, B, C, L и цифры 1, 2, 3. Из этого вытекает больший срок службы.
Соединение треугольником заключается в последовательном соединении обмоток.
Для того, чтобы понизить пусковые токи осуществлять запуск электродвигателя требуется в определенной последовательности, а именно: сперва электродвигатель запускают на пониженных оборотах соединённым по схеме «звезда»; затем электродвигатель соединяют по схеме «треугольник».
Соединение звезда и треугольник. Различие между ними
Соединение треугольником заключается в последовательном соединении обмоток. За счет этого происходит уменьшение пускового тока.
Переключать со звезды в треугольник можно только те электродвигатели, которые предназначены для работы при соединении в треугольник, то есть имеющие, обмотки, рассчитанные на линейное напряжение сети. То есть, увеличение напряжения в 1,73 раза, снижает ток точно на такую же величину.
К слову сказать, частотник тоже меняет не только частоту тока, но и напряжение, однако, он это делает с умом. Поэтому, получается еще один дополнительный нулевой вывод.
Реле времени включается в то же самое время, контакт этого реле K1 в цепи катушки пускателя КЗ размыкается.
Рисунки очень хорошо наглядно показывают, как и что должно быть.
Определение начала и конца фазных обмоток асинхронного электродвигателя
Подключение электродвигателя на 380В. Схема пуска звезда-треугольник
Итак, подытожим все вышеописанное. Теперь к проводам, которые их соединяют.
Но какую цель преследуют эти виды соединения, почему звезда треугольник применяются в разных электрических установках , в чем эффективность той и другой. Классическая схема переключения режимов с реле тока и времени После включения трехфазного автоматического выключателя АВ пускатель готов к работе.
В этом случае соединение звездой или треугольником выполняется внутри двигателя на лобной торцевой его части. После того, как пускатель K2 включится, он размыкает своими контактами K2 цепь питания катушки пускателя КЗ.
Соответственно, в этих двух случаях отличаются только токи в проводниках, ведущих к двигателю именно они указаны на шильдике, в то время как ток на обмотке будет одинаковый, что видно на рисунке сверху.
В большинстве случаев набор оборотов занимает до сек.
Также существуют определённые отличия в эргономичности.
Так, К первой фазы подсоединён у Н второй.
как подключить провода трехфазного двигателя в триугольник
Различия между «звездой» и «треугольником»
Двигатель попросту сгорит, так как при подключении обмоток в треугольник окажется запитанным повышенным напряжением: его рабочее фазное фазное напряжение составляет В, а линейное В. По сути, получается, что напряжение генератора при звезде, равное вольт, преобразуется в вольт, если провести переключение с одного варианта на другой.
Таким выглядит клеммник движка стандартной конфигурации. В трехфазной системе он равняется градусам.
Для удобства чтения, она разделена на две схемы: управления и силовой части. Электродвигатели могут подключаться и другими способами, когда применяется двойная или тройная звезда.
При подаче управляющего напряжения срабатывает магнитный пускатель K3 — цепь питания его катушки замыкается нормально замкнутыми контактами реле времени K1 и контактора K2. Соответственно, если нужно такой двигатель использовать в стране с более низким линейным напряжением, например, в США где линейной напряжение В, а фазное — В при частоте тока 60 Гц , то по-нормальному подключить такой двигатель в их однофазную сеть через конденсатор не получится.
При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются и контакторы. Если перепутать конец и начало — подключаемая машина не будет работать. Техническая пластина на боковине корпуса движка. Это достигается благодаря возможности создания более простой и одновременно эффективной конструкции, что, в свою очередь, вытекает из показателей экономичности.
Переключение режимов двигателя: звезда-треугольник
Соединение обмоток звездой и треугольником У всех трехфазных электродвигателей обмотки соединяются по схеме звезды или треугольника. Произошёл тут такой случай.
Для чего это необходимо делать? Одновременно с запуском КМ2 при помощи его дополнительного нормально разомкнутого контакта БКМ2 запускается реле времени, контакты которого переключаются, но срабатывания КМ1 не происходит, так как БКМ2 в цепи катушки КМ1 разомкнут. Реле времени, совмещенное с пускателем K1 в этой схеме, работает в цепи управления с небольшими токами, поэтому, может быть заменено обычным реле времени с тремя парами блок-контактов. В ином случае она будет трёхпроводной.
Следовательно, для России линейное напряжение В для такого двигателя надо использовать схему подключения звезда. Поэтому, применяются разные способы, с целью уменьшения пускового тока.
Подключение электродвигателя на 220В треугольником и звездой Демонстрация работы Какой вид лучше
Соединение обмоток звездой и треугольником
В таком случае, если из схемы исключено токовое реле, и переключение режимов осуществляется по уставке таймера, то в момент перехода на треугольник будут наблюдаться всё те же броски тока почти такой же продолжительности, как и при пуске с неподвижного состояния ротора.
Начало выводов присоединяют к соответствующим фазам питающей сети. Для этих целей при эксплуатации асинхронного электродвигателя применяют специальные электроаппараты ручного управления, к которым относятся реверсивные рубильники и пакетные переключатели или более модернизированные приборы дистанционного управления — реверсивные электромагнитные пускатели рубильники. Чтобы компенсировать потери, приходится изыскивать конденсатор большой ёмкости мкФ с рабочим напряжением не менее В.
Если это маломощный агрегат, то защита такую силу тока может выдержать, а если это электродвигатель большой мощности, то никакие защитные блоки не выдержат.
В ней нет нулевого провода, его просто некуда подключать. При такой разводке следует руководствоваться исключительно сведениями, указанными на технической пластине Конфигурировать такие движки как-то иначе, в бытовых условиях не представляется возможным. Однако простота требует жертв.
Соединение «звездой» и его преимущества
Когда в обмотках появляется трех фазное напряжение , на их полюсах происходит образование магнит ных потоков. В общем, подключил он неправильно, потому двигатель и сгорел. Также стоит обратить внимание на то, что пуско-защитная аппаратура подбирается на номинальную мощность электродвигателя, но при некорректном подключении звездой просто физически не может выполнять свои функции.
Мягкий пуск двигателя. Для сетей переменного тока 50 Гц линейное напряжение выше фазного в квадратный корень из трёх раз то есть примерно в 1. При цитировании материалов сайта активная гиперссылка на l При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются и контакторы. Звезда и треугольник принцип подключения.
Каталог реле и аппаратуры
Переключение звезда треугольник можно применять только для электродвигателей, имеющих на валу свободно вращающуюся нагрузку — вентиляторы, центробежные насосы, валы станков, центрифуг и другого подобного оборудования. Правда, встречаются иногда экземпляры несколько иной конфигурации.
После того, как электрический агрегат разгонится, то есть, скорость его вращения станет соответствовать паспортным данным, произойдет переход на треугольник со звезды. Кроме этого нельзя отрицать тот факт, что когда отключается контактор одного соединения Y, а двигатель еще не набрал нужных оборотов, срабатывает фактор самоиндукции, и в сеть поступает повышенное напряжение, что может вывести из рабочего состояния другое рядом включенное оборудование и приборы. Иными словами, электродвигатель включается по схеме подключения «треугольник». Типовая схема, выполненная с реле времени, предназначенном для запуска, то есть реле «треугольник-звезда», для осуществления управления запуска трехфазного электродвигателя асинхронного типа представлена на рисунке 5. Чтобы не было неприятностей двигатель всегда надо эксплуатировать на номинальном напряжении, а если требуется снизить обороты вращения вала, то тогда нужно использовать редукторы или преобразователи частоты переменного тока, а не пытаться решить вопрос самым дешёвым способом.
Что такое звезда и треугольник в трансформаторе?
Двухфазный двигатель
Двухфа́зный дви́гатель — электрический двигатель переменного тока с двумя обмотками, сдвинутыми в пространстве на 90°. При подаче на двигатель двухфазного тока, сдвинутого по фазе на 90°, образуется вращающееся магнитное поле. Короткозамкнутый ротор двигателя обычно изготавливается в виде «беличьего колеса». Обычно число стержней короткозамкнутого ротора не связано с числом пар полюсов статора, то есть при двух парах полюсов статора число стержней ротора может быть, например, 14 штук. Есть некие соображения, по которым число стержней ротора должно быть связано с числом полюсов ротора.
Содержание
- 1 Асинхронный однофазный электродвигатель
- 2 Асинхронный двухфазный электродвигатель
- 3 Серийные конденсаторные двухфазные двигатели
- 4 См. также
- 5 Литература
- 6 Примечания
- 7 Ссылки
Асинхронный однофазный электродвигатель [ править | править код ]
Если прервать один из трех питающих проводов вращающегося асинхронного трехфазного электродвигателя, то при небольшой нагрузке он будет продолжать работу на одной фазе. В двигателе остается вращающееся поле. Однако при однофазном включении в состоянии покоя такой двигатель не будет работать даже без нагрузки. Если третью фазу обмотки подключить через конденсатор к одному из двух питающих проводов, то трёхфазный двигатель, подсоединенный к сети однофазного тока, начнет работать и его рабочие характеристики будут сходны с характеристиками обычного трехфазного асинхронного двигателя.
Асинхронный двухфазный электродвигатель [ править | править код ]
Вращающиеся магнитные поля могут быть созданы и двухфазными обмотками, если эти обмотки пространственно смещены на 90° друг относительно друга. Если эти обмотки питать двумя токами, смещёнными на 90° по фазе, то получается, как и в трехфазном электродвигателе, вращающееся магнитное поле.
В двухфазном электродвигателе создается вращающий момент, обусловленный токами, вызванными вращающимся магнитным полем в стержнях ротора электродвигателя. Ротор получает ускорение до тех пор, пока он — как и в трёхфазном асинхронном двигателе — не достигнет определенной конечной частоты вращения, которая ниже частоты вращения поля.
Если обе обмотки статора питать от одной и той же сети однофазного тока, то сдвиг фазы в одной из обмоток, необходимый для получения вращающегося поля, может быть реализован последовательным включением конденсатора с достаточной емкостью [1] . На рисунке показана схема двухфазного асинхронного двигателя с конденсатором при питании от сети переменного тока.
Сдвиг фазы в одной из обмоток можно получить и последовательным включением резистора, но в этом случае увеличиваются потери активной мощности. Также сдвиг фазы получается, если взамен внешнего резистора на полюсе (или полюсах) одной из обмоток размещается короткозамкнутый виток. В этом случае увеличиваются потери активной мощности в соответствующей обмотке, зато исключается внешний резистор. Такие двигатели обычно имеют небольшую мощность и используются, например, в бытовых вентиляторах [2] .
В настоящее время расширилась сфера применения двухфазного асинхронного двигателя в виде электродвигателя с полым ротором. В таком электродвигателе вместо обычного короткозамкнутого ротора применяется алюминиевый цилиндр, который может вращаться в воздушном зазоре между внешним и внутренним статорами.
Вращающееся поле вызывает в алюминиевом цилиндре вихревые токи, которые, взаимодействуя с магнитным полем в воздушном зазоре, создают вращающий момент. Цилиндр достигает конечной асинхронной частоты вращения, которая соответствует нагрузке на валу.
Небольшой момент инерции ротора электродвигателя обусловливает благоприятные рабочие характеристики. Электродвигатели с полым ротором рассчитаны прежде всего на небольшие мощности и применяются для автоматического регулирования в компенсационных и мостовых схемах. Одна из обмоток вместе с конденсатором подключается к сети с напряжением, а на вторую обмотку подается управляющее напряжение.
Серийные конденсаторные двухфазные двигатели [ править | править код ]
- КДП-2
- КДП-4
- КД-5
- КД-6-4 — лицензионный японский двигатель
См. также [ править | править код ]
- Электрический двигатель
- Электропривод
- Конденсаторный двигатель
- Двухфазная электрическая сеть
Литература [ править | править код ]
к. т. н., профессор Шишкин В.П. Электрические микромашины (рус.) (недоступная ссылка) (2001). — Электрические микромашины автоматических устройств. Дата обращения: 6 февраля 2009. Архивировано 25 февраля 2009 года.