Arskama.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что лучше шаговый двигатель или серводвигатель

шаговый двигатель, серводвигатель: преимущества и недостатки

Шаговые двигатели и серводвигатели используются для схожих применений, но один из них используется там, где нужна более точное позиционирование и скорость перемещения.

Существенная разница заключается в том, что шаговые двигатели работают без обратной связи. Т.е. Вы посылаете импульс STEP на драйвер и двигатель поворачивается на угол одного шага.

Чтобы понять как работает шаговый двигатель, можно взять кварцевые часы, в которых секундная стрелка на каждый сигнал STEP совершает 1 шаг (перемещается на 1 секунду) и совершает 1 оборот за 60 импульсов STEP или 60 секунд. Точность совершения этих секундных перемещений зависит только от электроники, которая формирует управляющие сигналы.

10 наиболее значимых преимуществ шагового двигателя:

1) Стабильность. Работает при различных нагрузках.
2) Не требует обратной связи. Двигатель имеет фиксированный угол поворота.
3) Относительно невысокая стоимость для организации систем контролированных перемещений
4) Стандартизированные размеры двигателя и угол поворота.
5) Простота в установке и использовании.
6) Надежность. Если что-либо поломается, двигатель остановится.
7) Долгий срок эксплуатации.
8) Превосходный крутящий момент на низких оборотах.
9) Превосходная повторяемость при позиционировании.
10) Шаговый двигатель не может сгореть при нагрузке, превышающей максимальный вращающий момент двигателя. (При такой нагрузке двигатель будет просто пропускать шаги).

10 наиболее важных преимуществ серводвигателей:

1) Высокая мощность по сравнению с размерами и весом двигателя.
2) С помощью энкодера определяется разрешение.
3) Высокая эффективность. Может достичь 90% при небольших нагрузках.
4) Высокий крутящий момент по отношению к инерции. Работает с быстрым ускорением.
5) Резервирует энергию для поддержания питания на короткий период.
6) Резервирует вращающий момент для поддержания вращения на короткий период.
7) Двигатель остается прохладным. Ток потребления пропорционален нагрузке.
8) Высокий крутящий момент на высокой скорости.
9) Тихая работа на высоких скоростях.
10) Отсутствие явлений резонанса и вибрации.

10 наиболее значимых недостатков шаговых двигателей:

1) Низкая эффективность. Мотор потребляет много энергии независимо от нагрузки.
2) Крутящий момент резко снижается при увеличении частоты вращения (крутящий момент обратно пропорционален скорости.)
3) Низкая точность. 1:200 при полном шаге.1:2000 при микрошаге.
4) Склонен к резонансу. Для устранения резонансных процессов требуется микрошаг.
5) Отсутствует обратная связь для контроля шагов.
6) Не может резко стартовать на высокой скорости (Требуется плавный разгон).
7) Высокий нагрев двигателя в процессе работы.
8) Шаговый мотор не может моментально продолжить работу после перегрузки на валу.
9) Шумный на средних и высоких скоростях.
10) Низкая мощность по сравнению с размером и весом.

10 наиболее значимых недостатков серво двигателей (кроме их относительно дорогой стоимости):

1) Для стабильной работы двигателя требуется настройка драйвера (ПИД-регулятор).
2) Мотор может сгореть. Для предотвращения этого требуются специальные защитные цепи в драйвере.
3) Необходимо наличие энкодера.
4) Низкий срок эксплуатации щеток двигателя (требуется регулярное обслуживание и замена).
5) Пиковые нагрузки сокращают рабочий цикл.
6) При длительной работе с перегрузками двигатель может сгореть.
7) Сложность выбора двигателей, энкодеров и серводрайверов.
8) Многократное увеличение потребляемой энергии при пиковых нагрузках.
9) Двигатель развивает пиковую мощность на высокой скорости.
10) Плохое охлаждение двигателя. Требуется внешний вентилятор.

Сервопривод или шаговый двигатель: какова разница и что выбрать?

В качестве электропривода порталов и исполнительных узлов фрезерно-гравировальных станков с чпу и оборудования для плазменной резки с ЧПУ применяются шаговые двигатели и сервоприводы. Что лучше: шаговый двигатель или сервопривод, и в каких случаях применение того или иного электропривода экономически и технически оправданно, рассмотрим в данной статье.

Устройство шагового привода

Шаговый привод состоит из синхронной электрической машины и управляющего контроллера. Последний обеспечивает подачу управляющих сигналов на обмотки двигателя и их попеременное включение в соответствии с заданной программой.

Шаговый двигатель — электрическая машина, преобразующая управляющие сигналы в перемещение вала на определенный угол и фиксацию его в заданном положении. Количество шагов таких электродвигателей составляет от 100 до 400, угол шага — от 0,9-3,6°.

Принцип работы шагового двигателя

Состоит это электромеханическое устройство из статора, где размещены катушки возбуждения, и вращающейся части с постоянными магнитами или обмотками. Такая конструкция ротора обеспечивает его фиксацию после отработки управляющей команды.

На статоре расположено несколько обмоток. При подаче напряжения на катушку, под воздействием магнитного поля ротор поворачивается на определенный угол в соответствии с пространственным положением обмотки. При ее обесточивании и подаче управляющего сигнала на другую катушку вращающаяся часть электродвигателя занимает другую позицию. Каждый поворот вала соответствует углу шага. При обратной последовательности подачи напряжения на катушки ротор вращается в противоположном направлении.

Для поворота ротора на меньший угол одновременно включаются 2 обмотки. Количество шагов ограничено и зависит от числа полюсов статора электромотора. Для обеспечения плавного вращения ротора на катушки статора подают разные токи, разность которых определяет положение ротора. Такой способ управления позволяет снизить дискретность и увеличить количество шагов до 400.

К числу недостатков шаговых двигателей можно отнести довольно низкую скорость, пропуск шагов при высокой (выше расчетной) нагрузке на валу, снижение момента при высокой частоте вращения и большое время разгона.

Устройство сервопривода

Сервопривод состоит из синхронного двигателя, датчика скорости и положения, а также управляющего контроллера. Основная разница между шаговым двигателем и сервоприводом состоит в наличии обратной связи по положению, скорости, моменту на валу ротора.

Электропривод такого типа построен на базе следящей схемы автоматического регулирования. При несоответствии скорости или другой величины контроллер будет подавать сигналы на отработку, пока требуемый параметр или положение вала не будет соответствовать заданному. В качестве датчика обратной связи используют абсолютные и относительные энкодеры различных типов и конструкций.

Принцип действия сервопривода

Управляющее устройство в соответствии с заданной программой подает напряжение на сервопривод, который соединен с порталом станка. Двигатель перемещает рабочий орган. При этом энкодер вырабатывает импульсы, поступающие на контроллер. Подсчет их числа осуществляет управляющее устройство. Количество импульсов пропорционально перемещению портала. При достижении рабочим органом заданного положения на электромотор перестает поступать напряжение. Портал фиксируется. Пока число импульсов, зафиксированных контроллером с датчика, не достигнет запрограммированной величины, двигатель будет осуществлять перемещение рабочего органа.

Шаговый сервопривод можно также настроить на поддержание постоянной частоты вращения вне зависимости от нагрузки или постоянного момента при разной скорости.

К достоинствам сервоприводов относятся точность позиционирования, динамика разгона и отсутствие снижения момента при высоких скоростях. Ограничивает применение сервопривода, как правило, достаточно большая стоимость.

Читать еще:  Характеристики турбокомпрессора с двигателем

Чем отличается сервопривод от шагового двигателя?

Современные шаговые электродвигатели обеспечивают перемещение рабочей части с точностью до 0,01 мм.

Отличие шагового двигателя от сервопривода заключается в пропуске шагов при высокой (выше расчетной) нагрузке, что значительно снижает качество обработки

Сервопривод для поворотного стола фрезерного станка или портала другого оборудования обеспечивает точность до 0,002 мкм.

Позиционирование по следящей схеме обеспечивает высокое качество обработки независимо от нагрузки

Максимальная скорость перемещения рабочих органов при использовании шагового электропривода — 25 м.

Время разгона — 120 об/мин за секунду

Сервопривод может перемещать портал со скоростью более 60 м/мин.

Время разгона составляет до 1000 об/мин за 0,2 секунды

Критерии выбора

Тип приводного двигателя для станков выбирают по следующим характеристикам:

По этому параметру сервоприводы значительно превосходят шаговые электромоторы. На станок с ЧПУ для обработки крупных деталей или заготовок из твердых материалов лучше уставить сервомотор, например, ESTUN 1000 Вт. Такой электропривод обеспечит более высокую скорость обработки твердых материалов. Для малогабаритного промышленного оборудования (например, настольного фрезерного станка) среднего класса точности, предназначенного для обработки мягких материалов, лучше выбрать шаговый двигатель.

Программирование и настройка сервопривода на станке с ЧПУ требуют высокой квалификации исполнителя. Такой привод намного дороже в обслуживании, соответственно расходы на его эксплуатацию будут выше.

Сервоприводы для станков с ЧПУ необходимы для высокоточной автоматизированной обработки. Такой привод позволяет позиционировать положение рабочего органа с точностью до 0,02 мкм, в то время как максимальная точность шаговой электрической машины — 0, 01 мм.

Стоимость шагового двигателя значительно ниже цены сервопривода. При невысоком бюджете лучше предпочесть первый вариант.

По этому показателю сервомоторы предпочтительней. Работа шаговых электродвигателей сопровождается звуком, соответствующим частоте шагов на различных оборотах.

Таким образом, выбор сервопривода или шагового двигателя в качестве привода на фрезерно-гравировальный станок и оборудование для плазменной резки следует совершать, руководствуясь исключительно экономической и технической целесообразностью.

Что выбрать: сервопривод или шаговый двигатель?

Шаговые двигатели представляют собой электромеханические устройства, задача которых состоит в преобразовании сигналов управления в линейное или угловое перемещение ротора, при этом фиксируя ротор в требуемом положении без использования специальных устройств обратной связи. По большому счету шаговый двигатель — это синхронный двигатель, но его отличительной чертой является подход управления. Ниже будет приведено описание самых распространенных шаговых двигателей.

Одним из типов шаговых двигателей являются шаговые двигатели с постоянными магнитами. В их состав входят: статор, который обладает обмотками, и ротор, который и содержит постоянные магниты. Полюса ротора чередуются и обладают прямолинейной формой. Полюсы располагаются относительно оси двигателя параллельно. В связи с присутствующей намагниченностью ротора в шаговых двигателях рассматриваемого типа становится возможным обеспечить больший магнитный поток. А, соответственно, и больший момент, если проводить сравнение с двигателями с переменным магнитным сопротивлением. Двигатель шагового типа с постоянными магнитами обладает шагом, величина которого составляет 30°. Когда происходит включение тока в какой-либо одной из катушек, тогда ротор начинает пытаться занять определенное такое положение, при котором бы разноименные полюса статора и ротора стали бы находиться напротив друг друга. Для того, чтобы осуществить постоянное непрерывное вращение, требуется включать фазы попеременно. На практике рассматриваемые двигатели, как правило, имеют от 24 до 48 шагов на один оборот, при этом угол шага составляет от 7,5° до 15°. Максимальная скорость ограничивается обратной электродвижущей силй со стороны ротора, влиянию которой подвержены шаговые двигатели с постоянными магнитами.

Гибридный тип двигателей является более дорогим, нежели двигатели с постоянными магнитами. Но они способны обеспечить большую скорость, больший момент и меньший размер шага. Характерное число шагов для гибридных двигателей на один оборот составляет 100-400 шагов, при этом угол шага равен от 0,9° до 3,6°. У гибридных же двигателей ротор имеет зубцы, которые расположены в осевом направлении. Ротор подразделяется на две части таким образом, что между этими частями располагается цилиндрический постоянный магнит. Иными словами, получается, что зубцы верхней половинки ротора выступают как северный полюс, зубцы же нижней половинки — как южный. Наряду с этим, нижняя и верхняя половинки ротора повернуты таким образом, что поворот друг относительно друга равен половине от угла шага зубцов. Количество пар полюсов ротора такое же, как и число зубцов на одной из его половинок. Полюсные зубчатые наконечники ротора, впрочем, как и статор, состоят из отдельных пластин. Такая конструкция способствует уменьшению потерь на вихревые токи. Статор у гибридного двигателя тоже имеет зубцы. Благодаря этому обеспечивается достаточно большое число эквивалентных полюсов, что нельзя сказать об основных полюсах, на которых расположены обмотки. Как правило, на практике используются 4 основных полюса для 3,6° двигателей и 8 основных полюсов для 0,9°-1,8° двигателей. В некоторых определенных положениях ротора его зубцы обеспечивают меньшее сопротивление магнитной цепи. Это ведет к улучшению динамического и статического момента. Это свойство удалось обеспечить за счет особо соответствующего расположения зубцов. А именно за счет положения, при котором одна часть зубцов ротора располагается строго напротив зубцов статора, а другая часть между ними.

Сервоприводом обобщенно называют привод, асинхронного, синхронного либо какого-либо другого типа, который имеет отрицательную обратную связь по моменту, положению и другим параметрам. Благодаря такому приводу можно осуществлять точное управление всеми параметрами движения. Итак, сервопривод представляет собой целый комплекс специальных технических средств. Ниже приведен состав сервопривода в виде списка. В него входит:

  • привод, к примеру, электромотор;
  • датчик обратной связи, к примеру, датчик угла поворота выходного вала редуктора — энкодер;
  • блок управления и питания. Он же выступает в роли сервоусилителя.

Мощностная характеристика двигателей составляет от 0,05 кВт до 15 кВт.

Часто применяется такое понятие, как «вентильный двигатель». Следует понимать, что под этим названием понимается всего-навсего двигатель, который управляется посредством «вентилей» – специальных переключателей, ключей и разнообразные аналогичные коммутационные элементы. В роли современных «вентилей» могут также выступать и IGBT-транзисторы, которые применяются в блоках управления приводами. При этом никакого конструктивного отличия не наблюдается.

К главному достоинству сервоприводов относится наличие обратной связи. С ее помощью такая система вполне может поддерживать высокую точность позиционирования на достаточно больших скоростях и больших моментах. Кроме этого система имеет такие отличительные особенности, как низкоинерционность и высокие динамические характеристики. К примеру, время, которое необходимо для переключения от скорости -3000 об/мин до того момента, когда скорость достигнет значения в 3000 об/мин, будет равняться всего-навсего 0,1 с. Блоки управления, которые используются на сегодняшний день, можно назвать высокотехнологическими изделиями с достаточно сложной системой управления. Эти блоки способны обеспечивать выполнение практически любой задачи.

Читать еще:  Чего входит в капиталку двигателя

Сервопривод обеспечивает линейное поддержание момента на всем диапазоне изменения скоростей. Это свойство получилась достигнуть благодаря применению двигателя синхронного типа в высококачественном исполнении. Разрешающая способность датчика обратной связи, энкодера, а так же блок управления определяют величину шага перемещения. Традиционные стандартные сервоприводы вполне способны обеспечивать шаг в 0,036°, то есть 1/10000 часть от одного оборота, и это на скоростях до 5000 об/мин. Наиболее современные на сегодняшний момент сервоприводы отрабатывают шаг в 1/2500000 от одного оборота.

Итак, подытожим. Шаговый привод и сервопривод нельзя рассматривать как конкурентов, так как каждый из них занимает свою конкретную нишу на современном рынке. Выполним сравнение сервопривода и шагового привода, основываясь на рынке станков с числовым программным управлением (ЧПУ). Использование шаговых двигателей полностью целесообразно для применения в относительно недорогих станках с ЧПУ, которые предназначены для обработки легких металлов, дерева, древесно-стружечных плит (ДСП), пластиков, древесноволокнистых плит (МДФ) и других различных материалов средней скорости.

Использование высококачественных сервоприводов целесообразно в высокопроизводительном оборудовании, в котором основным критерием выступает уровень производительности. Единственным «недостатком» хорошего сервопривода является его достаточно высокая стоимость. Однако, сервоприводы обладаю рядом превосходных характеристик, которые достаточно часто играют решающую роль при выборе сервоприводов. К таким характеристикам можно отнести следующие:

  • возможность получения точного и высокостабильного управления;
  • наличие достаточно широкого диапазона регулирования скоростей;
  • высокий уровень помехоустойчивости;
  • компактные размеры;
  • маленький вес.

Если добиться одинаковых качественных характеристик от шагового привода и сервопривода, то их стоимости начнут быть соизмеримыми, но при этом, безусловно, лидером окажется сервопривод.

Серводвигатели против шаговых двигателей

Серводвигатели против шаговых двигателей.

Шаговый электродвигатель — это синхронный бесщёточный электродвигатель с несколькими обмотками, в котором ток, подаваемый в одну из обмоток статора, вызывает фиксацию ротора. Последовательная активация обмоток двигателя вызывает дискретные угловые перемещения (шаги) ротора.

Шаговые двигатели можно отнести к группе бесколлекторных двигателей постоянного тока. Шаговые двигатели, имеют высокую надежность и большой срок службы, что позволяет использовать их в индустриальных применениях. При увеличении скорости двигателя, уменьшается вращающийся момент.
Шаговые двигатели делают больше вибрации, чем другие типы двигателей, поскольку дискретный шаг имеет тенденцию хватать ротор от одного положения к другому. За счет этого шаговый двигатель во время работы очень шумный. Вибрация может быть очень сильная, что может привести двигатель к потери момента. Это связано с тем, что вал находится в магнитном поле и ведет себя как пружина. Шаговые двигатели работают без обратной связи, то есть не используют Энкодеры или резольверы для определения положения.
Типы:
Существует четыре главных типа шаговых двигателей:

  • Шаговые двигателя с постоянным магнитом
  • Гибридный шаговые двигателя
  • Двигатели с переменным магнитным сопротивлением
  • Биполярные и униполярные шаговые двигатели

Преимущества Шагового двигателя:

  • Устойчив в работе
  • Работает в широком диапазоне фрикционных и инерционных нагрузок и скоростей, скорость пропорциональна частоте входных импульсов.
  • Нет необходимости в обратной связи
  • Намного дешевле других типов двигателей
  • Подшипники — единственный механизм износа, за счет этого долгий срок эксплуатации.
  • Превосходный крутящий момент при низких скоростях или нулевых скоростях
  • Может работать с большой нагрузкой без использования редукторов
  • Двигатель не может быть поврежден механической перегрузкой
  • Возможность быстрого старта, остановки, реверсирования

Главным преимуществом шаговых приводов является точность. При подаче потенциалов на обмотки, шаговый двигатель повернется строго на определенный угол. Шаговый привод, можно приравнять к недорогой альтернативе сервоприводу, он наилучшим образом подходит для автоматизации отдельных узлов и систем, где не требуется высокая динамика.

Недостатки шагового двигателя:

  • Постоянное потребление энергии, даже при уменьшении нагрузки и без нагрузки
  • У шагового двигателя существует резонанс
  • Из-за того что нет обратной связи, можно потерять положение движения.
  • Падение крутящего момента на высокой скорости
  • Низкая ремонтопригодность

Применение.
Шаговые двигателя имеет большую область применения в машиностроении, станках ЧПУ, компьютерной технике, банковских аппаратах, промышленном оборудовании, производственных линиях, медицинском оборудовании и т.д.

Что такое серво двигатель и принцип его работы:

Серводвигателя делятся на категории щеточные (коллекторные) и без щеточные (без коллекторные) . Щеточные (коллекторные) серводвигатели могут быть постоянного тока, без коллекторные серводвигатели могут быть постоянного и переменного тока. Серводвигатели с щетками (коллекторные), имеют один недостаток каждые 5000 часов необходима замена щеток. На серводвигателях всегда есть обратная связь, это может быть энкодер или резольвером. Обратная связь необходима, чтобы достичь необходимой скорости, либо получить нужный угол поворота. В случаях высоких нагрузок и если скорость окажется ниже требуемой величины, ток пойдет на увеличение , пока скорость не достигнет нужной величины, если сигнал скорости покажет, что скорость больше, чем нужно, ток, пойдет на уменьшение. При использовании обратной связи по положению, сигнал о положении можно использовать чтобы остановить двигатель, после того, как ротор двигателя приблизится к нужному угловому положению.
АС серводвигатель — двигатель переменного тока. В ценообразовании двигатель переменного тока дешевле двигателя постоянного тока. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели и коллекторные.
В синхронных двигателях переменного тока ротор и магнитное поле вращается синхронно с одинаковой скоростью и в одном направлении с статором, а в асинхронных двигателях переменного тока ротор вращается несинхронно по отношению с магнитным полем. В асинхронном двигателе из-за отсутствия коллектора (щетки) регулировка оборотов происходит за счет изменения частоты и напряжения.

DC серводвигатель — двигатель постоянного тока.
Серводвигатели постоянного тока из за своих динамических качеств могут быть использованы приводом непрерывного действия. Серводвигатели постоянного тока могут постоянно работать в режимах старт, остановка и работать в обоих направлениях вращения. Обороты и развиваемый крутящий момент можно изменять путем изменения величины напряжения тока питания или импульсами.

Преимущества серводвигателей:

  • При малых размерах двигателя можно получить высокую мощность
  • Большой диапазон мощностей
  • Отслеживается положение, за счет использования обратной связи
  • Высокий крутящий момент по отношении к инерции
  • Возможность быстрого разгона и торможения
  • При высокой скорости, высокий крутящий момент
  • Допустимый предел шума при высоких скоростях
  • Полное отсутствия резонанса и вибрации
  • Точность позиционирования
  • Широкий диапазон регулирования скорости.
  • Точность поддержания скорости и стабильность вращающего момента.
  • Высокий статический момент Мо при нулевой скорости вращения.
  • Высокая перегрузочная способность: Mmax до 3.5Mo, Imax до 4Io
  • Малое время разгона и торможения, высокое ускорение (обычно > 5 м/с 2 ).
  • Малый момент инерции двигателя, низкий вес, компактные размеры.
Читать еще:  Чем грозит двигателю пропуск зажигания

Пример работы двигателя:
На данном примере я перескажу вам принцип работы серводвигателя. После того, как вы сгенерировали управляющую программу, она создается в системе G-кодов, то есть ваша линия, окружность или любой созданный вами объект конвертируется в перемещение по координатам X,Y, Z на определённое расстояние. За расстояние отвечают импульсы, которые подаются через блок управления на двигатель. При перемещении любой из осей, например на 100 мм, драйвер (блок управления) подает определённое напряжение на двигатель, вал двигателя (ротор). Вал двигателя соединен с ходовым винтом (ШВП), вращение оборотов двигателя отслеживается энкодер. При вращении ходового винта по любой из осей, потому что при использовании серво, энкодеры (обратная связь) устанавливаются на тех осях, где вы хотите определить положение, на энкодер подаются импульсы, которые считываются системой управления ЧПУ. Системы ЧПУ программируются так, что ни понимают что, например, для перемещения на 100 мм необходимо получить определенное количество импульсов. Пока система ЧПУ не получит нужное количество импульсов на вход драйвера (блока управления) будет подаваться напряжение задания (рассогласование). Когда портал станка проедет заданные 100 мм, система ЧПУ получит нужное количество импульсов и напряжение на входе драйвера упадет до 0 и двигатель остановится. Прошу вас заметить, что преимущество обратной связи в том, что если по какое то либо причине произойдет смещение портала станка, энкодер отправит на систему управления нужное количество импульсов, для подачи нужного напряжения на согласования драйвера (блока управления), и двигатель поменяет угол. Для того что разногласие было равно 0, это помогает удерживать станок в заданной точке с высокой точностью. Не все типы двигателей способны, обеспечивать динамику разгона, нужный крутящий момент и т. п.

Сравнительная характеристика по основным параметрам

Срок эксплуатации и обслуживание

Шаговые двигатели – нет щеток, это увеличивает срок эксплуатации до многих лет, единственным слабым местом являются подшипники, могут работать в большом диапазоне высоких температур. Срок эксплуатации в разы дольше любого типа двигателя.

Из всех видов серво двигателей, самые дешевые это двигателя коллекторного типа (со щетками), они менее надежны, чем шаговые двигатели и требуют замены щеток примерно через 5000 часов непрерывной работы.
Другой тип бесколлекторных сервоприводов производятся по надежности как и шаговые двигателя, отсутствие щеток увеличивает срок эксплуатации, но не уменьшает стоимость ремонта. В некоторых случаях проще и дешевле купить новый двигатель, а не пытаться его отремонтировать.

Очень тяжело повредить и износить подшипник. Как и в любом двигателе возможно повреждение обмотки двигателя. Из низкой цены проще купить новый шаговый двигатель.

В некоторых случаях проще и дешевле купить новый двигатель, а не пытаться его отремонтировать.

При использование точных механизмов, может быть не ниже +/- 0.01 мм

сервоприводы имеют высокую динамическую точность до 1-2мкм и выше (1 мкм = 0.001 мм)

В лазерно гравировальных станках скорость 20 – 25 метров в минуту. Если мы говорим о фрезерных станках ЧПУ с тяжелыми порталами и балками. Максимальная скорость перемещения до 9 м/мин.

С использованием сервоприводов в станках с ЧПУ возможно достижение скоростей до 60 м/мин при использование высокосортной механике.

до 120 об/мин за секунду

до 1000 об/мин за 0,2 секунды

Потеря шагов при повышении скорости и нагрузки

При высоких скоростях и высоких нагрузках происходит потеря шагов. Эта не проблема возможна при воздействии внешних факторов: ударов, вибраций, резонансов и т.п.

У серво двигателей присутствует обратная связь, что полностью исключает потерю шагов.

Принудительная остановка (столкновение с препятствием)

Принудительная остановка шагового двигателя не вызывает у него никаких повреждений

В случае принудительной остановки серводвигателя, драйвер мотора должен правильно среагировать на данную остановку. В противном случае по обратной связи подается сигнал на доработку не пройденного расстояния, повышается ток на обмотках, двигатель может перегреться и сгореть!

По цене шаговый двигатель намного дешевле своего товарища серво двигателя.

Минимум в 1,5 раз дороже шагового двигателя.

Каждый тип двигателя предназначен для своей задачи. В некоторых случаях нужно использовать шаговых двигатель, а для некоторых задач необходимо использовать только серво двигатель. В фрезерных станках ЧПУ широко используются оба типа двигателей, просто у каждого из них есть свои задачи, и иногда не целесообразно переплачивать за серво, при небольших объемах производства.

Подведем черту сравнения серводвигателей и шаговых двигателей:

Если же вас не устраивают скоростные характеристики, Вам необходимо рассмотреть фрезерные деревообрабатывающие станки с ЧПУ «АртМастер» 2112, 2515, 3015(авт.) и высокоскоростной фрезерный деревообрабатывающий станок «АртМастер 3015 Racer».

Вы всегда должны для себя понимать, что сервомоторы позволяют вам с экономить время на холостых переходах, при этом вы не должны забывать правильно оптимизировать количество проходов. Скорость фрезеровки всегда зависит от мощности режущего инструмента (электрошпинделя) и типа фрезы. Мы не сможете получить хорошую скорость фрезеровки при низком качестве инструмента. Вы получите либо брак в изделии, либо Вам потребуется постоянная замена режущего инструмента. То есть при использовании высоких скоростей, при обработке материала вы не должны забывать о качестве и типе инструмента для фрезеровки. Дорогой инструмент не только быстрее режет, но и служит дольше. И прошу не забывать другое преимущество серво: высокая скорость и производительность в разы выше, чем у шагового при фрезеровке объёмных изображений (фото), резьбы (фото). При наличии смены инструмента, вакуумного стола вы можете оптимизировать ваше производство и минимизировать отходы.

Если вы хотите добиться увеличения объёмов выполненной работы на вашем производстве, решение только одно — сервомоторы, а для старта или изготовления фасадов, дверей, столешниц, и прямолинейного, криволинейного раскроя при объёмах производства от 500-1000 кв.м, вы можете остановить свой выбор на станках с шаговыми двигателями.

  • Назад
  • Вперёд

Лизинг от ПриватБанка

Наше оборудование можно приобрести в лизинг от ПриватБанка

Мы в Google Play!

Используйте наше приложение для смартфонов и планшетов на базе ОС Android для ознакомления с нашей продукцией!

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector