Arskama.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что называется реакцией якоря синхронного двигателя

Синхронная машина

Синхронная машина — это электрическая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля в воздушном зазоре.

Содержание

  • 1 Устройство
  • 2 Принцип действия
    • 2.1 Генераторный режим
    • 2.2 Двигательный режим
  • 3 Разновидности синхронных машин
    • 3.1 Бесконтактная синхронная машина
  • 4 Примечания
  • 5 См. также
  • 6 Ссылки

Устройство [ править | править код ]

Основными частями синхронной машины являются якорь и индуктор (обмотка возбуждения). Как правило, якорь располагается на статоре, а на отделённом от него зазором роторе находится индуктор — таким образом, по принципу действия синхронная машина представляет собой как бы «вывернутую наизнанку» машину постоянного тока, переменный ток для обмотки якоря которой не получается с помощью коллектора, а подводится извне.

Якорь представляет собой одну или несколько обмоток переменного тока. В двигателях токи, подаваемые в якорь, создают вращающееся магнитное поле, которое сцепляется с полем индуктора, и таким образом происходит преобразование энергии. Поле якоря оказывает воздействие на поле индуктора и называется поэтому также полем реакции якоря. В генераторах поле реакции якоря создаётся переменными токами, индуцируемыми в обмотке якоря от индуктора.

Индуктор состоит из полюсов — электромагнитов постоянного тока [1] или постоянных магнитов (в микромашинах). Индукторы синхронных машин имеют две различные конструкции: явнополюсную или неявнополюсную. Явнополюсная машина отличается тем, что полюса ярко выражены и имеют конструкцию, схожую с полюсами машины постоянного тока. При не явнополюсной конструкции обмотка возбуждения укладывается в пазы сердечника индуктора, весьма похоже на обмотку роторов асинхронных машин с фазным ротором, с той лишь разницей, что между полюсами оставляется место, не заполненное проводниками (так называемый большой зуб). Неявнополюсные конструкции применяются в быстроходных машинах, чтобы уменьшить механическую нагрузку на полюса.

Для уменьшения магнитного сопротивления, то есть для улучшения прохождения магнитного потока, применяются ферромагнитные сердечники ротора и статора. В основном они представляют собой шихтованную (набранную из отдельных листов) конструкцию из электротехнической стали.

Принцип действия [ править | править код ]

Как всякая электромашина, синхронная машина может работать в режимах двигателя и генератора.

Генераторный режим [ править | править код ]

Обычно синхронные генераторы выполняют с якорем, расположенным на статоре, для удобства отвода электрической энергии. Поскольку мощность возбуждения невелика по сравнению с мощностью, снимаемой с якоря (0,3. 2%), подвод постоянного тока к обмотке возбуждения с помощью двух контактных колец не вызывает особых затруднений. Принцип действия синхронного генератора основан на явлении электромагнитной индукции; при вращении ротора магнитный поток, создаваемый обмоткой возбуждения, сцепляется поочерёдно с каждой из фаз обмотки статора, индуцируя в них ЭДС. В наиболее распространённом случае применения трёхфазной распределенной обмотки якоря в каждой из фаз, смещённых друг относительно друга на 120 градусов, индуцируется синусоидальная ЭДС. Соединяя фазы по стандартным схемам «треугольник» или «звезда», на выходе генератора получают трёхфазное напряжение, являющееся общепринятым стандартом для магистральных электросетей.

Частота индуцируемой ЭДС f [Гц] связана с частотой вращения ротора n [об/мин] соотношением:

f = n ⋅ p 60 <60>>> ,

где p — число пар полюсов.

Часто синхронные генераторы используют вместо коллекторных машин для генерации постоянного тока, подключая их обмотки якоря к трёхфазным выпрямителям — на тепловозах (например, ТЭП70, 2ТЭ116), автомобилях, летательных аппаратах. Это сделано из-за намного больших надёжности и межремонтного ресурса синхронных машин. [2] [3]

Двигательный режим [ править | править код ]

Принцип действия синхронного двигателя основан на взаимодействии вращающегося магнитного поля якоря и магнитного поля полюсов индуктора. Обычно якорь расположен на статоре, а индуктор — на роторе. В мощных двигателях в качестве полюсов используются электромагниты (ток на ротор подаётся через скользящий контакт щётка-кольцо), в маломощных, к примеру, в двигателях жёстких дисков — постоянные магниты. Существует обращённая конструкция двигателей, в которой якорь расположен на роторе, а индуктор — на статоре (в устаревших двигателях, а также в современных криогенных синхронных машинах, в которых в обмотках возбуждения используются сверхпроводники).

Запуск двигателя. Двигатель требует разгона до частоты, близкой к частоте вращения магнитного поля в зазоре, прежде чем сможет работать в синхронном режиме. При такой скорости вращающееся магнитное поле якоря сцепляется с магнитными полями полюсов индуктора: если индуктор расположен на статоре, то получается, что вращающееся магнитное поле вращающегося якоря (ротора) неподвижно относительно постоянного поля индуктора (статора), если индуктор на роторе, то магнитное поле вращающихся полюсов индуктора (ротора) неподвижно относительно вращающегося магнитного поля якоря (статора) — это явление называется «вход в синхронизм».

Для разгона обычно используется асинхронный режим [4] , при котором обмотки индуктора замыкаются через реостат или накоротко, как в асинхронной машине, для такого режима запуска в машинах на роторе делается короткозамкнутая обмотка, которая также выполняет роль успокоительной обмотки, устраняющей «раскачивание» ротора при синхронизации. После выхода на скорость, близкую к номинальной (> 95% — так называемая подсинхронная скорость), индуктор запитывают постоянным током.

В двигателях с постоянными магнитами применяется внешний разгонный двигатель либо частотно-регулируемый пуск, также частотное регулирование применяют на всех типах СД в рабочем режиме — например, на тяговых двигателях скоростного электропоезда TGV. Двигатели старых электропроигрывателей требовали ручного пуска — прокрутки пластинки рукой, позже в проигрывателях стали применяться асинхронные двигатели.

Иногда на валу крупных машин ставят небольшой генератор (постоянного тока или переменного тока с выпрямлением), т.н. возбудитель, который питает обмотку возбуждения. В некоторых случаях (например, на тепловозах) возбудитель установлен отдельно и приводится через повышающий редуктор. [5]

Читать еще:  Характеристика двигателя опель агила

Частота вращения ротора n [об/мин] остаётся неизменной, жёстко связанной с частотой сети f [Гц] соотношением:

n = 60 f p

>> ,

где p — число пар полюсов статора, в зависимости от нагрузки машины меняется лишь угол нагрузки (угол тета) — электрический угол отставания или опережения поля возбуждения по отношению к полю якоря. При угле нагрузки более 90 электрических градусов машина выпадает из синхронизма — останавливается, если вал перегружен тормозным моментом, либо уходит на повышенные обороты, если машина работает в режиме генератора и недогружена электрической нагрузкой.

Синхронные двигатели при изменении возбуждения меняют косинус фи с ёмкостного на индуктивный. Перевозбуждённые СД на холостом ходу применяют в качестве компенсаторов реактивной мощности. Синхронные двигатели в промышленности обычно применяют при единичных мощностях свыше 300 кВт (воздуходувки, водоперекачивающие и нефтеперекачивающие насосы), к примеру, типа СТД, при меньших мощностях обычно применяется более простой (и надёжный), в том числе в запуске, асинхронный двигатель с короткозамкнутым ротором.

Разновидности синхронных машин [ править | править код ]

Гидрогенератор — явнополюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от гидравлической турбины (при низких скоростях вращения, 50 — 600 мин –1 ).

Турбогенератор — неявнополюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от паровой или газовой турбины при высоких скоростях вращения ротора — 6000 (редко), 3000, 1500 об/мин.

Синхронный компенсатор — синхронный двигатель, предназначенный для выработки реактивной мощности, работающий без нагрузки на валу (в режиме холостого хода); при этом по обмотке якоря проходит практически только реактивный ток. Синхронный компенсатор может работать в режиме улучшения коэффициента мощности или в режиме стабилизации напряжения. Дает индуктивную нагрузку.

Машина двойного питания (в частности АСМ) — синхронная машина с питанием обмоток ротора и статора токами разной частоты, за счёт чего создаются несинхронные режимы работы.

Ударный генератор — синхронный генератор (как правило, трёхфазного тока), предназначенный для кратковременной работы в режиме короткого замыкания (КЗ).

Сельсин — маломощная синхронная машина, используемая как датчик угла поворота либо в паре с другим сельсином для передачи угла поворота без прямой механической связи.

Также существуют безредукторные, шаговые, индукторные, гистерезисные, бесконтактные синхронные двигатели.

Бесконтактная синхронная машина [ править | править код ]

В классической синхронной машине имеется слабое место — контактные кольца со щётками, изнашивающиеся быстрее других частей машины из-за электроэрозии и простого механического износа. Кроме того, искрение щёток может стать причиной взрыва. Поэтому сначала в авиации, а позже и в других областях (в частности, на автономных дизель-генераторах) получили распространение бесконтактные трёхмашинные синхронные генераторы. В корпусе такого агрегата размещены три машины — подвозбудитель, возбудитель и генератор, их роторы вращаются на общем валу. Подвозбудитель — синхронный генератор с возбуждением от вращающихся на роторе постоянных магнитов, его напряжение подаётся в блок управления генератором, где выпрямляется, регулируется и подаётся в обмотку статора возбудителя. Поле статора наводит в обмотке возбудителя ток, выпрямляемый размещённым на валу блоком вращающихся выпрямителей (БВВ) и идущий в обмотку возбуждения генератора. Генератор уже вырабатывает ток, идущий к потребителям.

Такая схема обеспечивает как отсутствие иных механических частей в двигателе, кроме подшипников, так и автономность работы генератора — всё время, пока генератор вращается, подвозбудитель даёт напряжение, которое может быть использовано для питания цепей управления генератором.

Что называется реакцией якоря синхронного двигателя

Синхронными машинами называют электрические машины переменного тока, у которых частота вращения ротора находится в строго постоянном соотношении с частотой тока электрической сети.

Трехфазные синхронные генераторы являются основными источниками электрической энергии. Первичными двигателями для них являются паровые или гидравлические турбины. По этому признаку генераторы называют турбогенераторами и гидрогенераторами. На автономных электростанциях синхронные генераторы имеют небольшую мощность и приводятся во вращение дизельными двигателями, газовыми турбинами или от ветроколеса.

К преимуществам синхронных генераторов следует отнести:

– способность вырабатывать как активную, так и реактивную мощность (с возможностью ее регулирования);

– возможность регулирования выходного напряжения;

– возможность работы как с сетью, так и в автономном режимах без применения каких-либо сложных дополнительных устройств;

Синхронные двигатели имеют постоянную частоту вращения и поэтому применяются там, где не требуется регулирование частоты или она должна быть постоянной. Мощность синхронных двигателей составляет десятки, сотни и тысячи киловатт на крупных металлургических заводах, в шахтах и других предприятиях. Имеются также синхронные микродвигатели мощностью от долей ватта до десятков ватт, используемых в схемах автоматики. Синхронная машина, работающая в режиме генератора или двигателя, может служить источником реактивной мощности. Специально предназначенный для этих целей ненагруженный активной мощностью двигатель называется синхронным компенсатором.

Устройство синхронной машины

Синхронная машина состоит из двух основных частей: неподвижного статора, выполняющего функции якоря, и вращающегося ротора, служащего индуктором.

Статор, так же как у асинхронный машины, представляет собой полый цилиндр, набранный из листов электротехнической стали со штампованными на внутренней поверхности пазами, в которые укладывается трехфазная обмотка.

Ротор представляет собой электромагнит, обмотка которого питается постоянным током через два изолированных контактных кольца, вращающихся вместе с ротором. Постоянный ток подводится к ротору через неподвижные щетки, скользящие по контактным кольцам.

Читать еще:  В чем минус дизельного двигателя

Принцип получения трехфазной системы ЭДС был рассмотрен в главе «Трехфазные цепи».

Конструктивно различают два типа роторов: явнополюсный
(рис. 11.18 а) и неявнополюсный (рис. 11.18 б).

Явнополюсный ротор, имеющий выступающие полюсы, применяют у машин с частотой вращения до 1000, 1500 об/мин. Неявнополюсный ротор, имеющий вид цилиндра, применяют при скоростях 1500 и 3000 об/мин.

11.17. Холостой ход синхронного генератора

При холостом ходе обмотка якоря (статора) разомкнута и магнитное поле машины создается только обмоткой возбуждения ротора (рис. 11.19). Форма наконечников полюсов ротора выполняется такой, чтобы распределение магнитной индукции в воздушном зазоре было близким к синусоидальному. Если выполнить распределенную обмотку статора с укороченным шагом и соединенной ее в звезду, наведенная в каждой фазной обмотке ЭДС будет изменяться по синусоидальному закону. Ее действующее значение

где – обмоточный коэффициент; – число витков одной фазы обмотки статора; – частота синусоидальных ЭДС; – число пар полюсов; – максимальный магнитный поток полюса ротора; – синхронная частота вращения. Согласно (11.49) ЭДС статора при неизменной частоте пропорциональна потоку. Изменяя ток возбуждения, можно регулировать магнитный поток и ЭДС генератора.

Зависимость при называется характеристикой холостого хода (рис. 11.20). Она применяется при расчете других характеристик и анализе режимов работы синхронных генераторов и двигателей.

Реакция якоря синхронной машины

В машине, работающей под нагрузкой, магнитное поле создается в отличие от холостого хода не только в роторе, но и МДС токов статора. Эти МДС, вращаясь с одной и той же синхронной частотой, взаимодействуют между собой и образуют результирующее вращающееся магнитное поле машины. Воздействие МДС статора на магнитное поле машины называется реакцией якоря.

Рассмотрим реакцию якоря на примере двухполюсного синхронного генератора с явновыраженными полюсами. На рис. 11.21 каждая фаза обмотки изображена в виде одного витка (А – Х, В – Y, С – Z), северный полюс ротора обозначен буквой N, южный – буквой S, магнитные линии этого поля не показаны.

Рис. 11.21 а поясняет реакцию якоря при активной нагрузке, когда угол сдвига по фазе между ЭДС и током равен нулю. В этом положении ЭДС и ток фазы А максимальны, а в фазах В и С равны половине от максимальных значений и противоположны по знаку (направление токов в верхней половине обмотки статора показано крестиками, в нижней – точками). Этим направлениям токов соответствует магнитное поле реакции якоря, основные линии которого направлены поперек оси полюсов ротора. Они размагничивают набегающий край полюса и намагничивают сбегающий. При этом результирующий магнитный поток генератора поворачивается относительно потока ротора на некоторый угол в направлении, противоположном направлению вращения ротора. Следовательно, при активной нагрузке ( = 0) реакция якоря синхронной машины является чисто поперечной.

Рис. 11.21 б соответствует фазовому сдвигу = 90°. В этом случае максимум тока в фазе А наступает в момент, когда ротор повернется на 90° по часовой стрелке. Ориентация потока реакция якоря осталась такой же, как на рис. 11.21 а, но теперь этот поток направлен навстречу потоку ротора по его продольной оси, т.е. при отстающем токе и = 90° реакция якоря действует по продольной оси и является по отношению к полю возбуждения размагничивающей.

Рис. 11.21 в соответствует опережающему току относительно ЭДС на угол = –90°. В этом случае максимум тока в фазе А наступает по сравнению с рис. 11.21 а на четверть периода раньше, когда ротор занимает положение, повернутое на 90° против вращения, т.е. при опережающем токе и –90° реакция якоря действует по продольной оси и является по отношению к полю возбуждения намагничивающей.

В общем случае, когда 0 и 90°, ток можно разложить на составляющие:

по продольной оси ; (11.50)

по поперечной оси . (11.51)

Продольная составляющая тока якоря создает продольную реакцию якоря, а поперечная – поперечную реакцию якоря. Угол считается положительным, когда ток отстает от ЭДС .

При работе синхронной машины в режиме двигателя ток в статоре имеет противоположное направление по сравнению с режимом генератора. Поэтому при = 0 ось результирующего потока оказывается повернутой относительно потока ротора на угол по направлению вращения ротора. При реакция якоря является продольной и намагничивающей, а при – продольной и размагничивающей.

Сравнение реакции якоря явнополюсных и неявнополюсных машин показывает, что принципиально они отличаются тем, что у неявнополюсных машин воздушный зазор почти одинаковый вдоль продольной и поперечной осей ротора. Поэтому и потоки реакции якоря по осям при одинаковых токах статора практически равны. У явнополюсных машин воздушный зазор вдоль поперечной оси во много раз больше, чем вдоль продольной оси. Поэтому при равных составляющих МДС якоря вдоль продольной и поперечной осей магнитный поток реакции якоря вдоль поперечной оси значительно меньше и составляет, примерно, 60 % от потока вдоль продольной оси.

Учебные материалы

При вращении ротора синхронного генератора от приводного двигателя ПД (см. рис.22,б) с постоянной частотой n, постоянное магнитное поле, создаваемое обмоткой возбуждения, пересекая проводники фазных обмоток статора наводит в них синусоидальную ЭДС, зависящую от синхронной частоты вращения n и максимального магнитного потока полюса ротора Фоm.

Катушки отдельных фаз статора сдвинуты в пространстве на электрический угол, равный 120° и их ЭДС образуют симметричную трехфазную систему.

Читать еще:  Что дает проверка компрессии двигателя

Изменяя ток возбуждения Iв можно регулировать магнитный поток и ЭДС генератора. Зависимость Е=f(Iв) называется характеристикой холостого хода генератора (нелинейная). Если к обмотке статора подключить нагрузку, то в обмотках статора потечет трехфазный ток.

В зависимости от вида нагрузки (активной, индуктивной или емкостной) ток может либо совпадать по фазе с ЭДС, либо сдвинут на некоторый угол.

При протекании трехфазного тока по обмоткам статора образуется вращающееся магнитное поле. При этом магнитные поля ротора и статора вращаются с одной и той же частотой n. они взаимодействуют между собой и образуют результирующее вращающееся магнитное поле машины.

Реакция якоря – это воздействие поля статора (якоря) на магнитное поле машины, создаваемое обмоткой возбуждения на роторе. Характер реакции якоря зависит от вида нагрузки.

При чисто активной нагрузке имеет место поперечная реакция якоря (векторы магнитных полей обмоток ротора и статора расположены под углом 90°). При чисто индуктивной нагрузке реакция якоря продольная размагничивающая (векторы магнитных полей направлены навстречу друг другу и результирующее магнитное поле уменьшается).

Рис.23. Внешние характеристики синхронного двигателя при различных видах нагрузки

При чисто емкостной нагрузке реакция якоря продольная намагничивающая (векторы магнитных полей имеют одинаковое направление и результирующее магнитное поле увеличивается).

Кроме характеристики холостого хода Е=f(Iв), синхронный генератор характеризуется внешней и регулировочной характеристиками, вид которых зависит от характера реакции якоря.

Внешняя характеристика это зависимость напряжения на зажимах генератора от тока нагрузки U=f(I).

Регулировочная характеристика это зависимость тока возбуждения от тока нагрузки Iв=f(I), при U=const.

Уважаемые студенты!
Специалисты нашего сайта готовы оказать помощь в учёбе по разным предметам:
✔ Решение задач
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Что называется реакцией якоря синхронного двигателя

Магнитная система синхронного генератора в режиме холостого хода (без нагрузки) имеет магнитный поток полюсов, который индуцирует ЭДС в обмотке статора. Однако после включения на грузки в трехфазной обмотке статора возникает ток, который, как известно, создает свое вращающееся поле. Скорость вращения этого поля равна скорости вращения поля полюсов. Следовательно, полный магнитный поток машин при нагрузке складывается из потоков ротора и статора, но отсюда не следует, что магнитное поле статора всегда усиливает поле полюсов. Результат взаимодействия этих полей определяется величиной и характером нагрузки.

Воздействие поля статора на поле полюсной системы возбуждения называется реакцией статора или по аналогии с машинами постоянного тока реакцией якоря.

Рассмотрим кратко реакцию якоря при различных по характеру нагрузках, пренебрегая незначительным влиянием реактивного сопротивления обмотки якоря.

В случае активной нагрузки, при которой ток совпадает по фазе с ЭДС, максимум тока наступит в тот момент, когда оси полюсов будут находиться против обмоток фаз (рис. 5-27, а). Это так называемая поперечная реакция якоря: потоки статора и ротора взаимно перпендикулярны. В результате сложения этих потоков общий магнитный поток генератора несколько увеличивается и смещается в пространстве, — следовательно, ЭДС генератора возрастает.

В случае чисто индуктивной нагрузки ток отстает от ЭДС по фазе на . К рассматриваемому моменту максимального значения тока в обмотке ротор повернут на 90° по часовой стрелке (рис. 5-27, б). Магнитные потоки направлены встречно, общий магнитный поток генератора равен их разности. Реакция якоря размагничивает машину и уменьшает ее ЭДС.

При емкостной нагрузке генератора ток нагрузки опережает по фазе ЭДС на следовательно, ротор генератора еще не дошел на 90° до вертикального положения, а ток в обмотке уже имеет максимальное значение (рис. 5-27, в). Потоки имеют одинаковое направление, увеличивают общий магнитный поток Ф, а это приводит к увеличению ЭДС.

При смешанной активно-индуктивной (рис. 5-28, а) или активно-емкостной (рис. 5-28, б) нагрузке ток и ЭДС сдвинуты по фазе на некоторый угол. Поток от обмотки статора может быть представлен в виде двух взаимно перпендикулярных составляющих: поперечной (активной) и продольной (реактивной). В результате реакции якоря результирующий магнитный поток смещается от вертикали и изменяется по значению в зависимости от характера нагрузки.

Во всех рассмотренных случаях мы не учитывали изменения нагрузки. Очевидно, что реакция якоря будет тем значительней, чем больше ток нагрузки, так как при этом поле якоря усиливается вместе с ростом нагрузки. Таким образом, реакция якоря в синхронном генераторе приводит к изменениям магнитного потока и ЭДС, что является крайне нежелательным, так как изменение значения и характера нагрузки приведут к изменению напряжения на зажимах генератора.

Уменьшения влияния реакции якоря можно добиться, например, увеличением воздушного зазора между статором и ротором при одновременном увеличении тока и числа витков обмотки возбуждения. Это приведет к уменьшению потока якоря за счет увеличения магнитного сопротивления цепи машины при неизменном общем потоке. Однако этим методом на практике нельзя полностью устранить влияние реакции якоря, так как увеличение сечения провода и числа витков обмотки возбуждения привели бы к нерациональной затрате меди и увеличению размеров генератора.

На практике при всяком изменении нагрузки с помощью автоматических устройств изменяют ток возбуждения; этим ослабляют влияние реакции якоря.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector