Arskama.ru

Автомобильный журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что определяет мощность двигателя в насосе

Мощность на валу насосов, вентиляторов и компрессоров

На основании заданной для вентилятора или насоса подачи и суммарного напора, а для компрессора — подачи и удельной работы сжатия — определяется мощность на валу, в соответствии с которой может быть осуществлен выбор мощности приводного двигателя.

Для центробежного вентилятора, например, формула определения мощности на валу выводится из выражения энергии, сообщаемой движущемуся газу в единицу времени.

Пусть F — сечение газопровода, м2; m — масса газа за секунду, кг/с; v — скорость движения газа, м/с; ρ — плотность газа, м3; ηв, ηп — кпд вентилятора и передачи.

Тогда выражение для энергии движущегося газа примет вид:

откуда мощность на валу приводного двигателя, кВт,

В формуле можно выделить группы величин, соответствующих подаче, м3/с, и напору вентилятора, Па:

Из приведенных выражений видно, что

здесь с, с1 с2 — постоянные величины.

Отметим, что вследствие наличия статического напора и конструктивных особенностей центробежных вентиляторов показатель степени в правой части может отличаться от 3.

Аналогично тому, как это было сделано для вентилятора, можно определить мощность на валу центробежного насоса, кВт, которая равна:

где Q — подача насоса, м3/с;

Нг— геодезический напор, равный разности высот нагнетания и всасывания, м; Нс — суммарный напор, м; P2 — давление в резервуаре, куда перекачивается жидкость, Па; P1 — давление в резервуаре, откуда перекачивается жидкость, Па; ΔН — потеря напора в магистрали, м; зависит от сечения труб, качества их обработки, кривизны участков трубопровода и т. д.; значения ΔН приводятся в справочной литературе; ρ1 — плотность перекачиваемой жидкости, кг/м3; g = 9,81 м/с2 — ускорение свободного падения; ηн, ηп — к. п. д. насоса и передачи.

С некоторым приближением для центробежных насосов можно принять, что между мощностью на валу и скоростью существует зависимость Р = сω 3 и М = сω 2 . Практически показатели степени у скорости меняются в пределах 2,5— 6 для различных конструкций и условий работы насосов, что необходимо учитывать при выборе электропривода.

Указанные отклонения определяются для насосов наличием напора магистрали. Отметим попутно, что очень важным обстоятельством при выборе электропривода насосов, работающих на магистрали с высоким напором, является то, что они весьма чувствительны к снижению скорости двигателя.

Основной характеристикой насосов, вентиляторов и компрессоров является зависимость развиваемого напора Н от подачи этих механизмов Q. Указанные зависимости представляются обычно в виде графиков НQ для различных скоростей механизма.

На рис. 1 в качестве примера приведены характеристики (1, 2, 3, 4) центробежного насоса при различных угловых скоростях его рабочего колеса. В тех же координатных осях нанесена характеристика магистрали 6, на которую работает насос. Характеристикой магистрали называется зависимость между подачей Q и напором, необходимым для подъема жидкости на высоту, преодоления избыточного давления на выходе из нагнетательного трубопровода и гидравлических сопротивлений. Точки пересечения характеристик 1,2,3 с характеристикой 6 определяют значения напора и производительности при работе насоса на определенную магистраль при различных скоростях.

Рис. 1. Зависимость напора Н насоса от его подачи Q.

Пример 1. Построить характеристики Н, Q центробежного насоса для различных скоростей 0,8ωн; 0,6ωн; 0,4ωн, если характеристика 1 при ω = ωн задана (рис. 1).

1. Для одного и того же насоса

2. Построим характеристику насоса для ω = 0,8ωн.

Таким образом, можно построить вспомогательные параболы 5, 5′, 5″. которые на оси ординат при Q = 0 вырождаются в прямую, и характеристики QH для различных скоростей насоса.

Мощность двигателя поршневого компрессора может быть определена на основании индикаторной диаграммы сжатия воздуха или газа. Такая теоретическая диаграмма приведена на рис. 2. Некоторое количество газа сжимается в соответствии с диаграммой от начального объема V1 и давления P1 до конечного объема V2 и давления P2.

На сжатие газа затрачивается работа, которая будет различна в зависимости от характера процесса сжатия. Этот процесс может осуществляться по адиабатическому закону без отдачи тепла, когда индикаторная диаграмма ограничена кривой 1 на рис. 2; по изотермическому закону при постоянной температуре, соответственно кривая 2 на рис. 2, либо по политропе кривая 3, которая показана сплошной линией между адиабатой и изотермой.

Рис. 2. Индикаторная диаграмма сжатия газа.

Работа при сжатии газа для политропического процесса, Дж/кг, выражается формулой

где n — показатель политропы, определяемый уравнением pV n = const; P1 — начальное давление газа, Па; P2 — конечное давление сжатого газа, Па; V1 — начальный удельный объем газа, или объем 1 кг газа при всасывании, м3.

Мощность двигателя компрессора, кВт, определяется выражением

здесь Q — подача компрессора, м3/с; ηк — индикаторный к. п. д. компрессора, учитывающий потери мощности в нем при реальном рабочем процессе; ηп — к. п. д. механической передачи между компрессором и двигателем. Так как теоретическая индикаторная диаграмма существенно отличается от действительной, а получение последней не всегда возможно, то при определении мощности на валу компрессора, кВт, часто пользуются приближенной формулой, где исходными данными являются работа изотермического и адиабитического сжатия, а также к. п. д. компрессора, значения которых приводятся в справочной литературе.

Эта формула имеет вид:

где Q — подача компрессора, м3/с; Аи — изотермическая работа сжатия 1 м3 атмосферного воздуха до давления Р2, Дж/м3; Аа — адиабатическая работа сжатия 1 м3 атмосферного воздуха до давления Р2, Дж/м3.

Зависимость между мощностью, на валу производственного механизма поршневого типа и скоростью совершенно отлична от соответствующей зависимости для механизмов с вентиляторным характером момента на валу. Если механизм поршневого типа, например насос, работает на магистраль, где поддерживается постоянный напор Н, то очевидно, что поршню при каждом ходе приходится преодолевать постоянное среднее усилие независимо от скорости вращения.

Читать еще:  Что такое cos фи асинхронного двигателя

Среднее значение мощности

но так как Н = const, то

Следовательно, среднее значение момента на валу насоса поршневого типа при постоянном противодавлении не зависит от скорости:

Мощность на валу центробежного компрессора, так же как у вентилятора и насоса, с учетом сделанных ранее оговорок пропорциональна третьей степени угловой скорости.

На основании полученных формул определяется мощность на валу соответствующего механизма. Для выбора двигателя в указанные формулы следует подставить номинальные значения подачи и напора. По полученной мощности может быть выбран двигатель продолжительного режима работы.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Мощность насоса

Мощность является одной из основных характеристик насоса. В настоящее время под термином «водяной насос» понимается специальное устройство, служащее для перемещения перекачиваемой среды (твердых, жидких и газообразных веществ).

В отличие от водоподъемных механизмов, которые тоже предназначены для перемещения воды, насосный агрегат увеличивает давление или кинетическую энергию перекачиваемой жидкости.

Содержание статьи

Напор и мощность насоса

Мощность — работа, которую совершает агрегат в единицу времени.

Полезная мощность насоса – мощность, сообщаемая устройством подаваемой жидкой среде. Но прежде чем перейти к понятию мощности необходимо рассмотреть ещё два параметра: подача и напор.

Подача насоса представляет собой количество жидкости, подаваемой в единицу времени и обозначается символом Q.

Напором насоса называется приращение механической энергии, получаемой каждым килограммом жидкости проходящей через насосный агрегат, т.е. разность удельных энергий жидкости при выходе из насоса и входе в него. Другими словами напор устройства показывает, на какую высоту в метрах насос поднимет столб воды.

И, наконец, третьим, интересующим нас параметром является мощность насоса N. Мощность обычно измеряется в киловаттах (кВт).

Полезная мощность насоса Nп – это полное приращение энергии, получаемое всем потоком в единицу времени. Чтобы рассчитать мощность насоса используется формула:

где y – удельный вес жидкости;
Q – подача насоса;
Н – напор насоса.

Потребляемая мощность насоса N – мощность потребляемая устройством – мощность подводимая на вал устройства от двигателя.

В зависимости от источника информации она ещё может называться:

Мощность на валу насоса Nв – это мощность которую затрачивает центробежный агрегат на то, чтобы покрыть потери энергии

Формула мощности на валу насоса:

Nв =Nп / η = yQH / η

где η — коэффициент полезного действия (КПД насоса)

КПД и потери мощности насоса

Вследствие потерь внутри машины только часть механической энергии, полученной им от двигателя, преобразуется в энергию потока жидкости. Степень использования энергии двигателя измеряется значением полного КПД насоса центробежного типа.

КПД насоса – коэффициент полезного действия – является одним из его основных качественных показателей и характеризует собой величину потерь энергии.

Формула кпд насоса выглядит так:

ηо — объемный КПД насоса – характеризует объемные потери

ηг — гидравлический КПД – характеризует гидравлические потери

ηм — механический КПД – характеризует механические потери

Расчет КПД насоса показывает возможные потери:

Потери в насосе = 1 – КПД

Анализируя причины возникновения потерь в насосе, можно найти пути к повышению его КПД.

Все виды потерь делятся на три категории: гидравлические, объемные и механические.

Гидравлические потери – часть энергии, получаемой потоком от колеса насоса, затрачивается на преодоление гидравлических сопротивлений при движении потока внутри насосного агрегата, ведут к снижению высоты напора.

Объемные потери – паразитные протечки (утечки) внутри насосной части — в уплотнениях лопастного колеса и в системе уравновешивания осевого давления ведут к уменьшению подачи.

Механические потери – часть энергии, получаемой насосом от двигателя, расходуется на преодоление механического трения внутри агрегата. В машине имеют место: трение колеса и других деталей ротора о жидкость, трение в сальниках и трение в подшипниках. Механические потери ведут к падению мощности всего устройства.

Таким образом, полный КПД центробежного насоса определяется гидродинамическим совершенствованием проточной части, качеством системы внутренних уплотнений и величиной потерь на механическое трение.

Расчет мощности или сколько потребляет насос

Мощность насоса фактически – это мощность сообщаемая ему электродвигателем. Циркуляционные аппараты, установленные в бытовых системах имеют довольно небольшую мощность и как следствие низкое энергопотребление. Фактически такие машины не поднимают воду на высоту, а только способствуют её перемещению далее по трубопроводу преодолевая местные сопротивления такие как изгибы, краны и отводы.

Кроме циркуляционных агрегатов в систему трубопровода могут быть смонтированы насосы для повышения давления.

При использовании в трубопроводе циркуляционного насоса значительно увеличивается эффективность системы отопления дома. К тому же появляется возможность сократить диаметр трубопровода и подсоединить котел с повышенными параметрами теплоносителя.

Для обеспечения бесперебойной и эффективной работы системы отопления необходимо выполнить небольшой расчет.

Требуется определить необходимую мощность котла – эта величина будет базовой при расчете системы отопления.

Согласно СНиП 2.04.07 “Тепловые сети” для каждого дома существую свои нормы потребления тепла (для холодного времени года, т.е. минус 25 – 30 градусов цельсия).
для домов в 1-2 этажа требуется 173 – 177 Вт/квадратный метр
для домов в 3-4 этажа требуется 97 – 101 Вт/квадратный метр
если 5 этажей и более нужно 81 – 87 Вт/квадратный метр.

Читать еще:  Греется двигатель на холостом ходу причины

Рассчитайте площадь отапливаемых помещений Вашего дома и умножьте на соответствующее этажности Вашего дома значение.

Оптимальный расход воды, рассчитывается по простой формуле:
Q=P,
где Q — расход теплоносителя через котел, л/мин;
Р — мощность котла, кВт.

Например, для котла мощностью 20 кВт расход воды составляет примерно 20 л/мин.

Для определения расхода теплоносителя на конкретном участке трассы, используем эту же формулу. Например, у Вас установлен радиатор мощностью 4 кВт, значит расход теплоносителя составит 4 литра в минуту.

Далее требуется определить мощность циркуляционного насоса. Чтобы определить мощность циркуляционного устройства воспользуемся правилом, на 10 метров длины трассы требуется 0,6 метра напора. Например при длине трассы 80 метров требуется агрегат с напором не менее 4,8 метра.

Следует отметить, что представленный в статье расчет носит справочный характер. Для того чтобы определить мощность центробежного насоса для Вашего дома воспользуйтесь советами наших специалистов или рекомендациями инженеров-теплотехников.

Для того, чтобы обеспечить постоянное функционирование системы отопления желательно установить два насоса. Один агрегат будет функционировать постоянной, второй (установленный на байпасе) – находится в резерве. При поломке или какой-то неисправности рабочего оборудования, Вы всегда сможете отключить его и демонтировать из контура, а в работу вступить резервный механизм. В случае когда монтаж байпасной ветки трубопровода затруднен, возможен другой вариант: один агрегат установлен в системе, а другой лежит в запасе на случай выхода из строя или поломки первого.

Видео по теме

Подбор необходимого насоса осуществляется по каталогу. Из выбранных насосов предпочтения отдаются тем, которые потребляют меньшую мощность и обладают более высоким КПД. Ведь показатели мощности и КПД в дальнейшем определяют затраты на электроэнергию при эксплуатации оборудования.

Расчет мощности двигателя насоса

Формула для определения мощности (кВт) двигателя насоса

,
где κ — коэффициент запаса (1.1—1.4);
γ — удельный вес перекачиваемой жидкости, Н/м³, для холодной воды равен 9810;
Q — производительность насоса, м³/с;
Н — напор насоса, м;
ηp — кпд передачи (при непосредственном соединении насоса с двигателем ηp = 1);
ηn — кпд насоса принимают равным: для поршневых насосов — 0.7—0.98; для центробежных насосов с давлением свыше 39 000 Па — 0.6—0.75; с давлением ниже 39 000 Па — 0.3— 0.6 (лучше всего кпд определять по данным каталогов).

При выборе двигателя к центробежному насосу необходимо обращать внимание на частоту вращения двигателя, так как у центробежного насоса мощность, напор, производительность и частота вращения связаны следующими соотношениями:

,
где M — момент двигателя.

Пример расчета мощности двигателя насоса

1. Определить мощность двигателя насоса при следующих данных Q = 50 м³/ч; H = 30 м; ηn = 0.5; nd = 1460 об/мин.
2. Определить мощность двигателя, напор насоса и производительность, если двигатель вращается с частотой 965 об/мин.

1. Мощность двигателя насоса при nd = 1460 об/мин

кВт,
где 3600 — коэффициент перевода производительности из м³/ч в м³/с.

2. При частоте вращения насоса nd = 965 об/мин мощность двигателя, напор насоса и производительность:

кВт;

м;

м³/ч.

Подробнее, о номинальных данных электрических машин, здесь.

    Подобные расчеты

Источник: В.И. Дьяков. Типовые расчеты по электрооборудованию.

Мощность насоса (напор): определение, формула, характеристики, единицы измерения

Мощность насоса – значимая техническая характеристика центробежного насоса, которая определяет выполняемую работу за определенный период времени. Под насосом имеют в виду систему для транспортировки перекачиваемой жидкости. Жидкость может быть чистой или с примесями в виде твердых частиц. Каждый насос перекачивает фракции определенного диаметра. Насос отличается от водоподъемного оборудования способностью увеличивать давление или кинетическую энергию.

Для расчета полезной мощности важно рассмотреть два важных термина. Подача напора насоса обозначается Q. Это количество воды, которое поступает в насос. Все измерения производятся за единицу времени. Напор насоса – это механическая энергия, вырабатываемая при прохождении жидкости через насос. Она определяется двумя значениями – энергией при входе и энергией на выходе воды. Простыми словами, напор насоса определяет высоту, на которую водяной насос сможет транспортировать жидкость.

Еще одним важным параметром будет мощность, потребляемая насосом. Она обозначается буквой N. Единицей измерения будут кВт. Полезная мощность – это Nп или полученная мощность, которая образуется при прохождении определенного количества воды за единицу времени.

КПД водяного насоса – это количество потерянной энергии. Это та энергия, которую потребляет двигатель для работы.

В процессе вырабатываемой энергии есть не только затраченная на перекачивание воды, но и несколько других разновидностей. Общие потери в насосах определяются по формуле: 1 – КПД. Чем меньше КПД, тем меньше лишней энергии вырабатывается. Следовательно, учитывая все существующие КПД и их причины, можно снизить общие потери в насосе.

Расчет КПД в насосе и двигателе

При техническом обслуживании специалист не сможет определить мощность, оставшийся срок службы подшипников насоса или двигателя с высокой степенью точности. Именно состояние этих деталей может стать причиной замены насоса или обслуживания. С другой стороны, в ходе использования насоса можно самостоятельно определить снижение мощности и сопутствующие неполадки. Объективно, если агрегат стал медленнее транспортировать жидкость из точки «А» в точку «Б», это говорит о необходимости замены двигателя или самого центробежного насоса.

Количественная оценка потери эффективности нужна в определенных ситуациях. Фактически можно количественно оценить существующий КПД насоса или двигателя и сравнить их с техническими особенностями оборудования.

Читать еще:  Bmw m50 двигатель его характеристики

В водяных насосах выделяют следующие виды КПД:

  1. Гидравлические. Они зависят от количества вращения лопастей насоса, выполняемых при перекачивании воды. Определяются потоком воды внутри насоса. Если гидравлический КПД превышает норму, насос будет хуже поднимать воду на высоту. Снижается напор насоса.
  2. Объемные. Это потенциальные утечки в насосе, которые снижают количество воды на моменте подачи жидкости в систему. Объемный КПД определяется делением фактического расхода, подаваемого насосом при заданном давлении, на его теоретический расход.
  3. Механические. Увеличивается из-за сильного трения внутри оборудования. Это может происходить из-за износа деталей, небольшого количества смазки, отсутствия жидкости. В результате существенно может снизиться мощность насоса. Определяется путем деления теоретического крутящего момента, необходимого для его привода, на фактический крутящий момент, необходимый для его приведения в действие. КПД 100% означает следующее: если насос будет подавать поток при нулевом давлении, для его привода не потребуется сила или крутящий момент.

В целом, КПД зависит от исправности насоса, качества и состояния уплотнителей, затрачиваемой энергии на механическое трение. Без ссылки на теоретический расход фактический расход, измеренный расходомером, не имеет смысла.

Рабочие характеристики

Показатели рабочих характеристик насоса определяются кривой. Она обозначает зависимость подачи и напора насоса. Соприкасаются эти два измерения в одной точке. Если посмотреть на график выше, можно определить понятие рабочей точки.

Она представляет собой пересечение гидравлической характеристики сети и напора. Также на графике отображается области устойчивой работы оборудования. Выходящий над точкой соприкосновения отрезок Q-H определяет зону неустойчивой работы агрегата. На этом отрезке вероятны срывы в работе. При нулевой подаче воды включается мощность холостого хода.

Как увеличить производительность центробежного насоса?

Центробежный насос не предназначен для создания одного конкретного набора рабочих условий, как это хотелось бы покупателю. Данный тип насоса спроектирован для обеспечения полного диапазона производительности, как указано на кривой графика.

Чтобы в полной мере оценить поведение кривой насоса и взаимосвязь между напором и производительностью центробежного насоса, представьте, что насос проводит воду в прямую вертикальную трубу. Если труба расположена высоко, жидкость в итоге достигнет определенного уровня, выше которого она подняться уже не сможет. Так определяют максимальный напор, который может развить центробежный насос при таком положении трубы. Он может работать, но продвинуть жидкость дальше этого уровня не сможет. В таком случае перекачиваемая жидкость остановится в корпусе оборудования, но через насос не пройдет. Следовательно, при максимальной производительности насоса будет нулевой напор.

В этом случае можно сделать отверстие в трубе на более низком уровне. Так, насос будет постоянно развивать все большую емкость. Если перенести это на график, можно определить производительность насоса. Кривая не оборвется на нулевом напоре. Но, учитывая сбои в работе насоса сверх определенной мощности, кривая обычно прерывается. Эта кривая определяет:

  • производительность, которую может развивать этот насос;
  • показатель общего напора, когда насос работает на определенной скорости с заданным диаметром рабочего колеса.

Нельзя полностью полагаться на показания кривой. Фактические условия на кривой будут зависеть от системы, в которой он работает. Это означает, что система управляет насосом и определяет условия работы, независимо от производственных показателей напора.

Препятствовать потоку жидкости из одной локации в другую могут препятствовать такие факторы, как сила тяжести и трение. Для снижения показателей силы тяжести жидкость должна подниматься по вертикали. Расстояние между источником и конечным пунктом транспортировки жидкости называется общим статическим напором. Он не является переменной скорости потока, и график, сравнивающий эти два значения, будет отображаться как прямая горизонтальная линия.

Еще одна важная характеристика насоса – трение. Этот термин определяет сопротивление потоку. Его рассчитывают из потерь со всех источников (например, в фильтрах, теплообменниках). Данные потерь можно измерить путем измерения давления на входе и выходе. По мере увеличения потока растут и потери на трение. Происходит это с большой скоростью.

Учитывается и давление в источнике всасывания и сливном резервуаре. Если это закрытые сосуды с разным давлением, полученную разницу добавляют к показателю общего напора. В этом случае график будет построен иначе: кривая начнется на уровне статического напора и будет постепенно увеличиваться в зависимости увеличения расходов напора.

Если вы правильно выберите насос, производительность пересечется с кривой в точке. Эта точка будет означать работу оборудования. Есть также несколько способов регулирования работы центробежного насоса:

  1. Изменение воздействия на систему перекачивания воды. Это наиболее простой способ, принцип которого заключается в использовании задвижки. Ее устанавливают в напорном трубопроводе. Существует потенциальная угроза кавитации при таких экспериментах. Объясняется это тем, что положение задвижки может влиять на рабочую точку.
  2. Регулирование частоты вращения насоса. Это эффективный способ снижения потерь, который повлияет на мощность центробежного насоса. Допустим только в моделях оборудования с возможностью регулирования частоты вращений.
  3. Связанный с изменением технических характеристик агрегата способ. С помощью вспомогательных элементов можно скорректировать силу напора, угол лопастей движущей части, количество рабочий ступеней.

На практике можно воспользоваться несколькими рабочими способами для изменения показателей мощности насосов. Перед эксплуатацией важно изучить возможности насоса и его технические возможности. Грамотное проектирование и установка центробежного насоса позволят использовать оборудование на всю мощность.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector