Что такое вентильный двигатель постоянного тока
Что такое вентильный двигатель постоянного тока
Вентильный электродвигатель
Нгуен Конг Там,
Динь Куок Выонг,
Ле Тхай Бинь,
студенты Санкт-Петербургского государственного морского технического университета .
Вентильный электродвигатель — это синхронный двигатель, основанный на принципе частотного регулирования с самосинхронизацией, суть которого заключается в управлении вектором магнитного поля статора в зависимости от положения ротора. Вентильные двигатели (в англоязычной литературе BLDC или PMSM) ещё называют бесколлекторными двигателями постоянного тока, потому что контроллер такого двигателя обычно питается от постоянного напряжения.
Этот тип двигателя создан с целью улучшения свойств электродвигателей постоянного тока. Высокие требования к исполнительным механизмам (в частности, высокооборотных микроприводов точного позиционирования) обусловили применение специфических двигателей постоянного тока: бесколлекторных трехфазных двигателей постоянного тока (БДПТ или BLDC). Конструктивно они напоминают синхронные двигатели переменного тока: магнитный ротор вращается в шихтованом статоре с трехфазными обмотками. Но обороты являются функцией от нагрузки и напряжения на статоре. Эта функция реализована с помощью переключения обмоток статора в зависимости от координат ротора. БДПТ существуют в исполнении с отдельными датчиками на роторе и без отдельных датчиков. В качестве отдельных датчиков применяются датчики Холла. Если выполнение без отдельных датчиков, то в качестве фиксирующего элемента выступают обмотки статора. При вращении магнита, ротор наводит в обмотках статора ЭДС, в результате чего возникает ток. При выключении одной обмотки измеряется и обрабатывается сигнал, который был в ней наведен. Этот алгоритм требует процессор обработки сигналов. Для торможения и реверса БДПС не нужна мостовая схема реверса питания – достаточно подавать управляющие импульсы на обмотки статора в обратной последовательности.
В вентильном двигателе (ВД) индуктор находится на роторе (в виде постоянных магнитов), якорная обмотка находится на статоре (синхронный двигатель). Напряжение питания обмоток двигателя формируется в зависимости от положения ротора. Если в двигателях постоянного тока для этой цели использовался коллектор, то в вентильном двигателе его функцию выполняет полупроводниковый коммутатор (датчик положения ротора (ДПР) с инвертором).
Основным отличием ВД от синхронного двигателя является его самосинхронизация с помощью ДПР, в результате чего у ВД частота вращения поля пропорциональна частоте вращения ротора.
Информационное агентство. Онлайн терминал финансовой информации.
новые запчасти для авто BMW. Доставка
Рис. 1. Вентильный электродвигатель с постоянными магнитами на роторе.
Статор имеет традиционную конструкцию и похож на статор асинхронной машины. Он состоит из корпуса, сердечника из электротехнической стали и медной обмотки, уложенной в пазы по периметру сердечника. Количество обмоток определяет количество фаз двигателя. Для самозапуска и вращения достаточно двух фаз — синусной и косинусной. Обычно ВД трёхфазные, реже – четырёхфазные.
По способу укладки витков в обмотки статора различают двигатели имеющие обратную электродвижущую силу трапецеидальной (BLDC) и синусоидальной (PMSM) формы. По способу питания фазный электрический ток в соответствующих типах двигателя также изменяется трапецеидально или синусоидально.
Ротор изготавливается с использованием постоянных магнитов и имеет обычно от двух до восьми пар полюсов с чередованием северного и южного полюсов.
Вначале для изготовления ротора использовались ферритовые магниты. Они распространены и дёшевы, но им присущ недостаток в виде низкого уровня магнитной индукции. Сейчас получают популярность магниты из сплавов редкоземельных элементов, так как они позволяют получить высокий уровень магнитной индукции и уменьшить размер ротора.
Датчик положения ротора
Датчик положения ротора (ДПР) реализует обратную связь по положению ротора. Его работа может быть основана на разных принципах — фотоэлектрический, индуктивный, на эффекте Холла, и т. д. Наибольшую популярность приобрели датчики Холла и фотоэлектрические, так как они практически безынерционны и позволяют избавиться от запаздывания в канале обратной связи по положению ротора.
Фотоэлектрический датчик, в классическом виде, содержит три неподвижных фотоприёмника, которые поочерёдно закрываются шторкой вращающейся синхронно с ротором. Это показано на рисунке. Двоичный код, получаемый с ДПР, фиксирует шесть различных положений ротора. Сигналы датчиков преобразуются управляющим устройством в комбинацию управляющих напряжений, которые управляют силовыми ключами, так, что в каждый такт (фазу) работы двигателя включены два ключа и к сети подключены последовательно две из трёх обмоток якоря. Обмотки якоря U, V, W расположены на статоре со сдвигом на 120° и их начала и концы соединены так, что при переключении ключей создаётся вращающееся магнитное поле.
Принцип работы ВД
Принцип работы ВД основан на том, что контроллер ВД коммутирует обмотки статора так, чтобы вектор магнитного поля статора всегда был ортогонален вектору магнитного поля ротора. С помощью широтно-импульсной модуляции (ШИМ) контроллер управляет током, протекающим через обмотки ВД, т.е. вектором магнитного поля статора, и таким образом регулируется момент, действующий на ротор ВД. Знак у угла между векторами определяет направление момента действующего на ротор.
Градусы при расчете — электрические. Они меньше геометрических градусов в число пар полюсов ротора. Например, в ВД с ротором имеющим 3 пары полюсов оптимальный угол между векторами будет 90°/3 = 30°
Коммутация производится так, что поток возбуждения ротора — Ф поддерживается постоянным относительно потока якоря. В результате взаимодействия потока якоря и возбуждения создаётся вращающий момент M, который стремится развернуть ротор так, чтобы потоки якоря и возбуждения совпали, но при повороте ротора под действием ДПР происходит переключение обмоток и поток якоря поворачивается на следующий шаг.
В этом случае и результирующий вектор тока будет сдвинут и неподвижен относительно потока ротора, что и создаёт момент на валу двигателя.
В двигательном режиме работы МДС статора опережает МДС ротора на угол 90°, который поддерживается с помощью ДПР. В тормозном режиме МДС статора отстаёт от МДС ротора, угол 90° так же поддерживается с помощью ДПР.
Достоинства и недостатки ВД
— высокое быстродействие и динамика, точность позиционирования;
— широкий диапазон изменения частоты вращения;
— бесконтактность и отсутствие узлов, требующих техобслуживания — бесколлекторная машина;
— возможность использования во взрывоопасной и агрессивной среде;
— большая перегрузочная способность по моменту;
— высокие энергетические показатели (КПД более 90 % и cosφ более 0,95);
— большой срок службы, высокая надёжность и повышенный ресурс работы за счёт отсутствия скользящих электрических контактов;
— низкий перегрев электродвигателя, при работе в режимах с возможными перегрузками.
— относительно сложная система управления двигателем;
— необходимо полупроводниковое устройство, управление более сложное и дорогое, чем у других типов электродвигателей.
1. И.О. Овчинников. Вентильные электрические двигатели и привод на их основе.
Элементы теории вентильного привода
Определение вентильного двигателя
Обозначение в зарубежной литературе
Конструкция
Статор
Ротор
В зависимости от количества магнитов, расположенных в поперечном сечении ротора двигатель будет иметь то или иное количество полюсов.
В погружных вентильных электродвигателях используемых в нефтяной отрасли ротор содержит постоянные магниты. Как правило погружные ВД выпускаются 8-ми и 4-х полюсными.
При одной и той же частоте вращения электромагнитного поля статора, частота вращения вентильного электродвигателя с большим количеством пар полюсов будет меньше. Так, если скорость вращения 8-ми полюсного электродвигателя 1500 об/мин, то 4-х полюсный при той же частоте поля будет вращаться с частотой 3000 об/мин.
Принцип работы
Принцип работы вентильного электродвигателя
Здесь, одно из ключевых отличий вентильного (синхронного) и асинхронного двигателей.
Принцип работы асинхронного электродвигателя
Его ротор представляет собой обмотку с короткозамкнутыми витками , по виду напоминающую беличью клетку прутья которой — стержни с торцов соединенные кольцами.
Вращающееся электромагнитное поле статора наводит в роторе ЭДС, в стержнях ротора начинает течь ток, в результате чего возникает магнитное поле, которое и заставляет вращаться ротор вслед за магнитным полем, создаваемым статором. Именно то, что поле статора движется относительно ротора является условием возникновения электромагнитного поля в роторе. Если ротор заставить вращаться с той же скоростью, что и магнитное поле, создаваемое статором, то ЭДС в роторе наводится не будет! Таким образом скорость вращения ротора асинхронного двигателя всегда меньше скорости вращения поля.
Синхронный же двигатель не требует возбуждения ЭДС ротора от магнитного поля, создаваемого статором, магнитное поле здесь уже присутствует без его участия. Поэтому ротор синхронного электродвигателе вращается строго с частотой поля, создаваемого обмотками статора. Если установить частоту вращения синхронного двигателя равной 3000 об/мин, то это значит, что и магнитное поле двигателя, создаваемого обмотками статора равна 3000 об/мин. Частота вращения асинхронного двигателя в тех же условиях будет 2910 об/мин.
Система управления вентильным электродвигателем
Инвертором в данном случае называют электронную систему, осуществляющую подачу напряжения, частота которого не зависит от частоты питающего напряжения на обмотки электродвигателя.
Инвертором оснащаются не только синхронные (вентильные) электродвигатели, но асинхронные — там где требуется регулирование частоты вращения.
Существуют два основных подхода (принципа) в управлении вентильными электродвигателями:
- 1. Управления коммутацией (6-ти пульсное управление);
- 2. Векторное управление.
Управление коммутацией
И еще раз обратим ваше внимание! Не частота вращения ротора изменяется от частоты вращения поля, а поле подстраивается под частоту вращения ротора. Инвертор регулирует частоту вращения ротора изменяя ток и/или напряжение коммутируемое к обмоткам.
Определение положения ротора
Для определения положения ротора существуют различные методы:
- при помощи датчиков (например датчика Холла);
- бездатчиковый.
В погружных вентильных электродвигателях используется бездатчиковый метод определения положения ротора, т.к. применение датчиков в данном случае невозможно в силу специфики эксплуатации.
В бездатчиковом методе при вращении двигателя определение положение ротора осуществляется по значению ЭДС, наводимой в свободной фазе (к которой в данной момент не подводится питающее напряжение) обмотки статора. При движении ротора ЭДС в свободной фазе меняется и переход ее через 0 является «отметкой» положения ротора.
При таком методе управления в обмотках статора течет ток по форме близкий к трапецеидальному.
Данный способ управления характеризует простота и надежность, что позволяет управлять вентильным электродвигателем не только на коротких расстояниях, но и на длинных линиях — сотни метров и даже километры, что актуально для нефтяного погружного оборудования.
Векторное управление
Метод позволяет очень точно управлять электродвигателем. Метод наиболее ресурсоемкий в плане математических вычислений, однако развитие микропроцессорной техники позволяет компенсировать это. Применение его на коротких линиях очень эффективно, однако использование на длинных линиях ставит перед разработчиками множество преград, решение которых — нетривиальная задача.
Вентильный двигатель
Вентильный электродвигатель (ВД) — это замкнутая электромеханическая система, состоящая из синхронной машины с синусоидальным распределением магнитного поля в зазоре, датчика положения ротора, преобразователя координат и усилителя мощности [1] .
Механическая и регулировочная характеристики вентильного двигателя линейны и идентичны механической и регулировочной характеристикам электродвигателя постоянного тока. Как и электродвигатели постоянного тока, вентильные двигатели работают от сети постоянного тока. ВД можно рассматривать как двигатель постоянного тока, в котором щёточно-коллекторный узел заменён электроникой, что подчёркивается словом «вентильный», то есть «управляемый силовыми ключами» (вентилями). Фазные токи вентильного двигателя имеют синусоидальную форму. Как правило, в качестве усилителя мощности применяется автономный инвертор напряжения с широтно-импульсной модуляцией.
Вентильный двигатель следует отличать от бесколлекторного двигателя постоянного тока (БДПТ), который имеет трапецеидальное распределение магнитного поля в зазоре и характеризуется прямоугольной формой фазных напряжений [1] . Структура БДПТ проще чем структура ВД (отсутствует преобразователь координат, вместо ШИМ используется 120- или 180-градусная коммутация, реализация которой проще ШИМ).
В русскоязычной литературе двигатель называют вентильным, если противо-ЭДС управляемой синхронной машины синусоидальная, а бесконтактным двигателем постоянного тока, если противо-ЭДС трапецеидальная.
В англоязычной литературе такие двигатели обычно рассматриваются в составе электропривода и упоминаются под аббревиатурами PMSM (Permanent Magnet Synchronous Motor) или BLDC (Brushless Direct Current Motor). Стоит отметить, что аббревиатура PMSM в англоязычной литературе чаще используется для обозначения самих синхронных машин с постоянными магнитами и с синусоидальной формой фазных противо-ЭДС, в то время как аббревиатура BLDC аналогична русской аббревиатуре БДПТ и относится к двигателям с трапецеидальной формой противо-ЭДС (если иная форма не оговорена специально).
Вообще говоря, вентильный двигатель не является электрической машиной в традиционном понимании, поскольку его проблематика затрагивает ряд вопросов, связанных с теорией электропривода и систем автоматического управления: структурная организация, использование датчиков и электронных компонентов, а также программное обеспечение.
Вентильные двигатели, сочетающие в себе надёжность машин переменного тока с хорошей управляемостью машин постоянного тока, являются альтернативой двигателям постоянного тока (ДПТ), которые характеризуются рядом изъянов, связанных со щёточно-коллекторным узлом (ЩКУ), таких как искрение, помехи, износ щёток, плохой теплоотвод якоря и проч. Отсутствие ЩКУ позволяет применять ВД в тех приложениях, где использование ДПТ затруднено или невозможно.
Содержание
- 1 Описание и принцип работы [2]
- 2 Применение
- 3 Достоинства и недостатки
- 4 Конструкция
- 4.1 Статор
- 4.2 Ротор
- 4.3 Датчик положения ротора
- 4.4 Система управления
- 5 См. также
- 6 Примечания
- 7 Ссылки
Описание и принцип работы [2] [ править ]
На входы преобразователя координат (ПК) поступают напряжения постоянного тока , действие которого аналогично напряжению якоря двигателя постоянного тока, и
, аналогичное напряжению возбуждения двигателя постоянного тока (аналогия действует при рассмотрении схемы независимого возбуждения двигателя постоянного тока).
Сигналы , представляют собой проекции вектора напряжения управления
на оси вращающейся системы координат
, связанной с ротором ВД (а точнее — с вектором потока ротора). Преобразователь координат осуществляет преобразование проекций
в проекции
неподвижной системы координат
, связанной со статором .
Как правило, в системах управления электропривода задаётся [3] , при этом уравнения преобразования координат принимают вид [4] :
где — угол поворота ротора (и системы вращающихся координат) относительно оси
неподвижной системы координат. Для измерения мгновенного значения угла
на валу ВД устанавливается датчик положения ротора (ДПР).
По сути, является в этом случае заданием значения амплитуды фазных напряжений. А ПК, осуществляя позиционную модуляцию сигнала
, формирует гармонические сигналы
, которые усилитель мощности (УМ) преобразует в фазные напряжения
. Синхронный двигатель в составе вентильного двигателя часто называют синхронным электромеханическим преобразователем (СЭМП).
Как правило, электронная часть ВД коммутирует фазы статора синхронной машины так, чтобы вектор магнитного потока статора был ортогонален вектору магнитного потока ротора (т. н. векторное управление). При соблюдении ортогональности потоков статора и ротора обеспечивается поддержание максимального вращающего момента ВД в условиях изменения частоты вращения, что предотвращает выпадение ротора из синхронизма и обеспечивает работу синхронной машины с максимально возможным для неё КПД. Для определения текущего положения потока ротора вместо датчика положения ротора могут использоваться токовые датчики (косвенное измерение положения).
Электронная часть современного ВД содержит микроконтроллер и транзисторный мост, а для формирования фазных токов используется принцип широтно-импульсной модуляции (ШИМ). Микроконтроллер отслеживает соблюдение заданных законов управления, а также производит диагностику системы и её программную защиту от аварийных ситуаций.
Иногда датчик положения ротора отсутствует, а положение оценивается системой управления по измерениям токовых датчиков с помощью наблюдателей (т. н. «бездатчиковое» управление ВД). В таких случаях, за счёт удаления дорогостоящего и, зачастую, громоздкого датчика положения, уменьшается цена и массо-габаритные показатели электропривода с ВД, однако усложняется управление, снижается точность определения положения и скорости.
В приложениях средней и большой мощности в систему могут дополнительно включаться электрические фильтры для смягчения негативных эффектов ШИМ: перенапряжений на обмотках, подшипниковых токов и снижения КПД. Впрочем, это характерно для всех типов двигателей.
Применение [ править ]
Благодаря высокой надёжности и хорошей управляемости, вентильные двигатели применяются в широком спектре приложений: от компьютерных вентиляторов и CD/DVD-приводов до роботов и космических ракет. Широкое применение ВД нашли в промышленности, особенно в системах регулирования скорости с большим диапазоном и высоким темпом пусков, остановок и реверса; авиационной технике, автомобильном машиностроении, биомедицинской аппаратуре, бытовой технике и проч.
Достоинства и недостатки [ править ]
Вентильные двигатели призваны объединить в себе лучшие качества двигателей переменного тока и двигателей постоянного тока. Это обусловливает их достоинства.
- Широкий диапазон изменения частоты вращения
- Бесконтактность и отсутствие узлов, требующих частого обслуживания (коллектора)
- Возможность использования во взрывоопасной и агрессивной среде
- Большая перегрузочная способность по моменту
- Высокие энергетические показатели (КПД выше 90 %)
- Большой срок службы и высокая надёжность за счёт отсутствия скользящих электрических контактов.
Вентильные двигатели характеризуются и некоторыми недостатками, главный из которых — высокая стоимость. Однако, говоря о высокой стоимости, следует учитывать и тот факт, что вентильные двигатели обычно используются в дорогостоящих системах с повышенными требованиями по точности и надёжности.
- Высокая стоимость двигателя, обусловленная частым использованием дорогостоящих постоянных магнитов в конструкции ротора. Стоимость электропривода с ВД, однако, сопоставима со стоимостью аналогичного электропривода на основе ДПТ с независимым возбуждением (регулировочные характеристики такого двигателя и ВД сопоставимы). Вообще говоря, в вентильном двигателе может быть использован и ротор с электромагнитным возбуждением, однако это сопряжено с комплексом практических неудобств. В ряде случаев предпочтительным оказывается применение асинхронного двигателя с преобразователем частоты.
- Относительно сложная структура двигателя и управление им.
Конструкция [ править ]
Конструктивно современные ВД состоят из электромеханической части (синхронной машины и датчика положения ротора) и из управляющей части (микроконтроллер и силовой мост). Упоминая о конструкции ВД, полезно иметь в виду и неконструктивный элемент системы — программу (логику) управления.
Синхронная машина, используемая в ВД, состоит из шихтованного (собранного из отдельных электрически изолированных листов электротехнической стали — для снижения вихревых токов) статора, в котором расположена многофазная (обычно двух- или трёхфазная) обмотка и ротора (обычно на постоянных магнитах).
В качестве датчиков положения ротора в БДПТ применяются датчики Холла, а в ВД — вращающиеся трансформаторы и накапливающие датчики. В т. н. «бездатчиковых» системах информация о положении определяется системой управления по мгновенным значениям фазных токов.
Информация о положении ротора обрабатывается микропроцессором, который, согласно программе управления, вырабатывает управляющие ШИМ-сигналы. Низковольтные ШИМ-сигналы микроконтроллера затем преобразуются усилителем мощности (обычно транзисторным мостом) в силовые напряжения, подаваемые на двигатель.
Совокупность датчика положения ротора и электронного узла в ВД и БДПТ можно с определённой долей достоверности сравнить с щёточно-коллекторным узлом ДПТ. Однако следует помнить, что двигатели редко применяются вне электропривода. Таким образом, электронная аппаратура характерна для ВД почти в той же степени, что и для ДПТ.
Статор [ править ]
Статор имеет традиционную конструкцию. Он состоит из корпуса, сердечника из электротехнической стали и медной обмотки, уложенной в пазы по периметру сердечника. Обмотка разбита на фазы, которые уложены в пазы таким образом, что пространственно сдвинуты друг относительно друга на угол, определяемый числом фаз. Известно, что для равномерного вращения вала двигателя машины переменного тока достаточно двух фаз. Обычно синхронные машины, применяемые в ВД, трёхфазные, однако встречаются также и ВД с четырёх- и шестифазными обмотками.
Ротор [ править ]
Ротор изготавливается с использованием постоянных магнитов и имеет обычно от двух до шестнадцати пар полюсов с чередованием северного и южного полюсов.
Для изготовления ротора раньше использовались ферритовые магниты, что определялось их распространённостью и дешевизной. Однако такие магниты характеризуются низким уровнем магнитной индукции. В настоящее время интенсивно используются магниты из сплавов редкоземельных элементов, поскольку они позволяют получить более высокий уровень магнитной индукции и уменьшить размер ротора.
Датчик положения ротора [ править ]
Датчик положения ротора (ДПР) реализует обратную связь по положению ротора. Его работа может быть основана на разных принципах — фотоэлектрическом, индуктивном, трансформаторном, на эффекте Холла и проч. Наибольшую популярность приобрели датчики Холла и фотоэлектрические датчики, обладающие низкой инерционностью и обеспечивающие малые запаздывания в канале обратной связи по положению ротора.
Обычно фотоэлектрический датчик, содержит три неподвижных фотоприёмника, между которыми находится вращающаяся маска с рисками, жёстко закреплённая на валу ротора ВД. Упрощённо датчик показан на рис. 1, где маска изображена серым цветом, а светодиоды — жёлтым. Таким образом, ДПР обеспечивает информацию о текущем положении ротора ВД для системы управления.
Система управления [ править ]
Система управления содержит микроконтроллер, контролирующий силовой инвертор согласно заданной программе управления. В качестве силовых ключей инвертора обычно применяют транзисторы MOSFET (ВД малых и средних мощностей) или IGBT (ВД средних и больших мощностей), реже тиристоры.
Основываясь на информации, полученной от ДПР, микроконтроллер формирует ШИМ-сигналы, которые усиливаются инвертором и подаются на обмотку синхронной машины.
Вентильный двигатель постоянного тока: принцип действия
Бесколлекторный вентильный электромотор ВМЭД, ДВУ индуцирует на ферромагнитном роторе непостоянные магнитные полюса. Магнитное сопротивление создает крутящий момент. Существуют три типа таких моторов:
- индукторный;
- синхронный;
- асинхронный.
Вентильно-реактивный двигатель (ВРД) состоит из двух фазных обмоток вокруг диаметрально противоположных полюсов статора. Ротор движется соответственно полюсам статора, поэтому сопротивление магнитного поля минимально. Этот же принцип лежит в основе действия вентильно-индукторного электромотора.
Ограничение фазного тока на низких скоростях защищает электронику от высоких вольт-секунд. Гистерезис тока позволяет достичь этого. Специальные датчики контролируют процесс.
Ток ограничен на более высоких скоростях. Этот двигатель отличается от аналогичных устройств минимальным влиянием магнитного поля на его работу.
Достоинства вентильного электромотора:
- Незначительное магнитное сопротивление сводит к минимуму потери энергии.
- Возможна работа при пиковых нагрузках.
- Широта выбора скоростей.
- Мягкость переключения скоростей.
Недостатки автоматизированного вентильного двигателя постоянного тока:
- Сложность управления.
- Более высокая, чем у аналогичных устройств, стоимость.
- Высокий уровень шума.
Конструктивные особенности
На положение ротора в тяговом вентильном двигателе указывают датчики. Эти механизмы в совокупности являются электромеханической частью мотора. Силовой момент и микроконтроллер составляют управляющую часть. Блок управления мотором входит в логистическую неконструктивную часть системы.
Изолированные стальные листы собраны в синхронный привод, являющийся механической частью агрегата. В обмотке и роторе образуются вихревые токи, а такая конструкция способствует их уменьшению. Датчики Холла обеспечивают нормальную работу прибора. При отсутствии индикаторных устройств в вентильном моторе сигналы идут напрямую к магнитной установке. Эти же устройства контролируют режим реверса для того, чтобы при погружении мотор не останавливался.
Без этой функции, позволяющей дистанционно контролировать работу мотора и менять установки, не обойтись при буровых работах и добыче угля, нефти и газа. ШИМ-сигналы контролируются согласно настройкам шагового микропроцессора, обрабатывающего все данные о положении ротора. Если уровень этих сигналов низок, их усиливают, используя приборы, действующие по принципу микротрансформаторов.
Разновидности вентильного двигателя постоянного тока
Вентильные моторы могут работать от постоянного или переменного тока. Кроме этого, их делят на следующие разновидности:
- Однофазный двигатель. У этого простейшего вентильного мотора наименьшее количество связей между машиной и электроникой. Его недостатками являются пульсация и большой крутящий момент. Его невозможно запускать на всех угловых положениях. Такие двигатели широко применяются в машинах, требующих высокой скорости.
- Двухфазное устройство. При дополнительной настройке этот двигатель создает асимметрию в полюсах ротора или активизирует воздушный зазор при работе. Его устанавливают в машинах, у которых связь статора с обмоткой критична. Но этому двигателю свойственны пульсации и большой крутящий момент, способные повлечь за собой пагубные последствия.
- Трехфазное устройство. Для осуществления запуска и в случаях, когда требуется создать крутящий момент, не используя большого количества фаз, пользуются этим дисковым двигателем. Агрегаты данного типа применяются в разнообразных отраслях производства, а иногда и в быту. Из всех вышеописанных устройств это – самое популярное. В механизмах, где необходимо сочетание высокой мощности с малой скоростью (например, в насосах) лучше всего использовать трехфазные электродвигатели с четным количеством полюсов. Однако трехфазным моторам свойственны большой крутящий момент и высокий уровень шума.
- Двигатель с четырьмя фазами характеризуется существенно сниженным крутящим моментом и пульсациями. Сфера его применения достаточно ограничена из-за высокой стоимости и большой мощности.
Разработка и создание погружного или многофазного вентильного двигателя постоянного тока своими руками маловероятны, так как на это требуется много усилий и времени, поэтому необходимое для выполнения технологических задач устройство проще купить. Цены вентильных электромоторов в разных городах Украины и России могут сильно различаться (от 8 до 20 тысяч рублей). Стоимость зависит от изготовителя и сферы использования. Вентильные двигатели постоянного тока находят применение в таких областях, как нефтедобыча, буровые установки, системы охлаждения воздуха, химическая промышленность.