Что является нагрузкой для двигателя - Автомобильный журнал
Arskama.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что является нагрузкой для двигателя

Почему необходимо повышать коэффициент мощности?

Коррекция коэффициента мощности

Коэффициент мощности – это отношение полезной (активной) мощности к полной (кажущейся) мощности, потребляемой электрооборудованием объекта или электроустановкой. Он является мерой эффективности преобразования электрической энергии в полезную работу. Идеальное значение коэффициента мощности равно единице. Любая величина, меньшая, чем единица, означает, что для получения желаемого результата необходима дополнительная мощность.

Протекание токов приводит к потерям в генерирующих мощностях и распределительной системе. Нагрузка с коэффициентом мощности 1,0 наиболее эффективно загружает источник, а нагрузка с коэффициентом мощности, к примеру, 0,8 является причиной больших потерь в системе и более высоких расходов на электроэнергию. Сравнительно небольшое улучшение коэффициента мощности может привести к значительному снижению потерь, так как они пропорциональны квадрату тока.

Если коэффициент мощности меньше единицы, это указывает на присутствие так называемой реактивной мощности. Она требуется для получения магнитного поля, необходимого для работы двигателей и других индуктивных нагрузок. Реактивная мощность, которую также можно назвать бесполезной мощностью или мощностью намагничивания, создаёт дополнительную нагрузку на систему электропитания и увеличивает затраты потребителя за электроэнергию.

Низкий коэффициент мощности обычно является результатом сдвига фаз между напряжением и током на выводах нагрузки. Также его причиной может стать высокое содержание гармоник, то есть сильно искажённая форма тока. Коэффициент мощности чаще всего понижается из-за наличия индуктивных нагрузок: асинхронных двигателей, силовых трансформаторов, ПРА люминесцентных ламп, сварочных установок и дуговых печей. Искажения формы тока могут быть результатом работы выпрямителей, преобразователей, регулируемых приводов, импульсных источников питания, газоразрядных ламп или других электронных нагрузок.

Низкий коэффициент мощности из-за индуктивных нагрузок может быть улучшен с помощью оборудования коррекции коэффициента мощности, а низкий коэффициент мощности из-за искажения формы тока требует изменения конструкции оборудования или установки фильтров гармоник. Некоторые преобразователи позиционируются как имеющие коэффициент мощности выше 0,95, тогда как на самом деле их реальный коэффициент мощности находится в пределах от 0,5 до 0,75. Значение 0,95 основано на косинусе угла между напряжением и током и не учитывает провалы в форме тока, которые также приводят к увеличению потерь.

Для работы индуктивной нагрузки необходимо магнитное поле, для создания которого требуется ток, отстающий по фазе от напряжения. Коррекция коэффициента мощности (компенсация реактивной мощности) – это процесс компенсации отставания тока путём генерации опережающего тока при подключении конденсаторов к системе электроснабжения. При этом величина подключаемой ёмкости выбирается таким образом, чтобы коэффициент мощности был максимально возможно близким к единице.

Подробнее о коэффициенте мощности

Представим себе однофазный асинхронный двигатель. Если он является чисто резистивной нагрузкой для источника, ток будет в фазе с напряжением. Но так не бывает. Двигатель имеет магнитную систему, и ток намагничивания находится не в фазе с напряжением. Ток намагничивания – это ток, который определяет магнитный поток в сердечнике. Будучи не в фазе с напряжением, он заставляет поворачиваться вал двигателя. Ток намагничивания не зависит от нагрузки двигателя, его величина обычно находится в пределах от 20 до 60% от номинального тока двигателя при полной нагрузке, и он не вносит вклад в выполнение двигателем полезной работы.

Рассмотрим двигатель с током потребления 10 А и коэффициентом мощности 0,75. В этом случае полезный ток равен 7,5 А. Полезная мощность двигателя равна 230 х 7,5 = 1,725 кВт, однако общая потребляемая мощность составляет 230 х 10 = 2,3 кВт. Без коррекции коэффициента мощности для получения требуемой мощности 1,725 кВт (7,5 А) должна подаваться мощность 2,3 кВА (10 А). То есть потребляется ток 10 А, но полезную работу выполняют только 7,5 А.

Коэффициент мощности можно определить двумя способами:

  • коэффициент мощности равен частному активной мощности (кВт) и полной мощности (кВА).
  • коэффициент мощности равен косинусу угла между активной мощностью и полной мощностью (cosφ).

Коррекция коэффициента мощности

Коррекция коэффициента мощности (компенсация реактивной мощности) – это название технологии, которая используется с начала 20 века для восстановления значения коэффициента мощности до значения, как можно более близкого к единице. Это обычно достигается подключением к сети конденсаторов, которые компенсируют потребление реактивной мощности индуктивными нагрузками и таким образом снижают нагрузку на источник. При этом не должно быть никакого влияния на работу оборудования.

Обычно для уменьшения потерь в системе распределения и снижения расходов на электроэнергию производится компенсация реактивной мощности с помощью конденсаторов, которые подключаются к сети для максимально возможной компенсации тока намагничивания. Через конденсаторы, содержащиеся в большинстве устройств компенсации реактивной мощности, проходит ток, который опережает по фазе напряжение, обеспечивая таким образом опережающий коэффициент мощности. Если конденсаторы подключаются к цепи, которая работает при отстающем коэффициенте мощности, это отставание соответственно уменьшается.

Обычно значение скорректированного коэффициента мощности находится в пределах от 0,92 до 0,95. Некоторые распределительные энергокомпании поощряют работу при коэффициенте мощности, к примеру, больше 0,9, а некоторые штрафуют потребителей за низкий коэффициент мощности. Имеется много методов достижения данной цели, суть которой сводится к тому, что для снижения потерь энергии в системе распределения потребителю рекомендуется применять коррекцию коэффициента мощности. В настоящее время большинство сетевых компаний штрафуют потребителей при коэффициенте мощности ниже 0,95 или 0,9.

Необходимость повышения коэффициента мощности

При должным образом выполненной коррекции коэффициента мощности достигаются следующие преимущества:

  • экологические: снижение потребления электроэнергии за счёт повышения эффективности её использования. Снижение потребления приводит к уменьшению выбросов парниковых газов и замедлению истощения ресурсов ископаемого топлива для электростанций;
  • уменьшение расходов на электроэнергию;
  • возможность получения большей мощности от имеющегося источника;
  • снижение тепловых потерь в трансформаторах и оборудовании распределения;
  • уменьшение падения напряжения в длинных кабелях;
  • увеличение срока службы оборудования в связи со снижением электрической нагрузки на кабели и другие электрические компоненты.

Методы улучшения коэффициента мощности

Коррекция коэффициента мощности (компенсация реактивной мощности) достигается установкой конденсаторов параллельно двигателю или схеме освещения, которые могут устанавливаться на оборудовании, распределительном щите или на вводе в электроустановку.

Статическая компенсация реактивной мощности может быть достигнута для каждого отдельного двигателя при подключении компенсирующих конденсаторов к пускателю двигателя. При этом при изменении нагрузки двигателя может наблюдаться недо- или перекомпенсация. Статическая компенсация реактивной мощности не должна применяться на выходе регулируемого привода, электронного устройства плавного пуска или преобразователя, так как конденсаторы могут стать причиной выхода из строя электронных компонентов.

При правильно рассчитанной компенсации реактивной мощности не должно быть перекомпенсации. Обычно компенсация реактивной мощности отдельного двигателя рассчитывается исходя из реактивной (намагничивающей) мощности, так как она сравнительно постоянна в отличие от активной мощности, это позволит избежать перекомпенсации.

Читать еще:  Двигатель 3се дизель не заводится

При применении управления компенсацией реактивной мощности в схеме звезда/треугольник необходимо обратить внимание на то, чтобы конденсаторы не работали в режиме частого подключения и отключения. Обычно устройство компенсации подключается к сети или цепям контактора переключения на треугольник. Устройство компенсации реактивной мощности, подключаемое на вводе электроустановки, состоит из контроллера, измеряющего реактивную мощность и коммутирующего конденсаторы для поддержания значения коэффициента мощности выше заданного значения (обычно 0,95). При применении общей компенсации реактивной мощности другие нагрузки теоретически могут устанавливаться в любом месте сети.

Большая Энциклопедия Нефти и Газа. Работа асинхронного двигателя под нагрузкой

2.9. Совместная работа асинхронного двигателя с нагрузкой на валу

На рис. 2.16 рассматривается совместная работа асинхронного двигателя с нагрузкой на валу. Нагрузочный механизм (рис. 2.16.а) соединяется с валом двигателя и при вращении создает момент сопротивления (момент нагрузки). При изменении нагрузки на валу автоматически изменяется частота вращения ротора, токи в обмотках ротора и статора и потребляемый из сети ток. Пусть двигатель работал с нагрузкой Mнагр1 в точке 1 (рис. 2.16.б). Если нагрузка на валу увеличится до значения Mнагр2, рабочая точка переместится в точку 2. При этом частота вращения ротора снизится (n2 M1). Снижение частоты вращения ротора приводит к увеличению скольжения, увеличению токов в обмотках ротора и статора, т.е. к увеличению потребляемого из сети тока.

2.10. Искусственные механические характеристики

Построенная по паспортным данным двигателя механическая характеристика называется естественной. Если изменять величину подведенного напряжения, активное сопротивление ротора или другие параметры, то можно получить механические характеристики, отличные от естественной, которые называют искусственными.

При понижении подведенного напряжения частота вращения магнитного поля n0 остается неизменной, а уменьшается критический Mкр и пусковой Mпуск моменты, т.е. снижается перегрузочная способность и ухудшаются пусковые свойства двигателя. При понижении подведенного напряжения механическая характеристика становится мягче.

При увеличении активного сопротивления обмотки ротора за счет введения реостата Rдоб в цепь фазного ротора сохраняется неизменным Mкр, т.е. сохраняется перегрузочная способность двигателя, но происходит увеличение пускового момента. Частота вращения в режиме идеального холостого хода остается неизменной, равной n0. С увеличением активного сопротивления обмотки ротора механические характеристики становятся мягче, т.е. ухудшается устойчивость работы двигателя.

2.11. Пуск в ход асинхронного двигателя

В момент пуска в ход n=0, т.е. скольжение S=1. Т.к. токи в обмотках ротора и статора зависят от скольжения и возрастают при его увеличении, пусковой ток двигателя в 5 ÷ 8 раз больше его номинального тока

Как рассматривалось ранее, из-за большой частоты ЭДС ротора асинхронные двигатели имеют ограниченный пусковой момент

Для пуска в ход двигателя необходимо, чтобы развиваемый им пусковой момент превышая момент нагрузки на валу. В зависимости от мощности источников питания и условий пуска используют разные способы пуска, которые преследуют цели: уменьшение пускового тока и увеличение пускового момента.

Различают следующие способы пуска в ход асинхронных двигателей: прямое включение в цепь, пуск при пониженном напряжении, реостатный пуск, использование двигателей с улучшенными пусковыми свойствами.

2.11.1. Прямое включение в сеть

Это самый простой и самый дешевый способ пуска. На двигатель вручную или с помощью дистанционного управления подается номинальное напряжение. Прямое включение в сеть допускается, если мощность двигателя не превышает 5% от мощности трансформатора, если от него питается и осветительная сеть. Ограничение по мощности объясняется бросками тока в момент пуска, что приводит к снижению напряжения на зажимах вторичных обмоток трансформатора. Если от трансформатора не питается осветительная сеть, то прямое включение в сеть можно применять для двигателей, мощность которых не превышает 25% от мощности трансформатора.

Нагрузка — асинхронный двигатель — Большая Энциклопедия Нефти и Газа, статья, страница 1

Нагрузка — асинхронный двигатель

Нагрузка асинхронного двигателя осуществляется соединением двигатели через муфту пли ременную передачу с, рабочей машиной, загрузку которой можно поддерживать постоянной. [1]

Способов нагрузки асинхронного двигателя, используемых на практике, довольно много, каждый из них имеет свою область применения. Основные простейшие способы рассмотрены ниже. [2]

Ток нагрузки асинхронного двигателя является важнейшим показателем его работы, вследствие чего необходимо установить характер зависимости этого тока от других параметров двигателя. [3]

Простейшим способом нагрузки асинхронного двигателя является его торможение посредством одного из тормозных приспособлений. При этом энергия, полученная двигателем от источника питания, теряется в виде тепловых потерь. По указанной причине способ пригоден главным образом для испытания двигателей незначительных мощностей. [4]

Почему при увеличении нагрузки асинхронного двигателя растет ток в статоре. [5]

Добавочные потери при нагрузке асинхронных двигателей возникают за счет действия потоков рассеяния, пульсаций индукции в воздушном зазоре, ступенчатости кривых распределения МДС обмоток статора и ротора и ряда других причин, В короткозамкнутых роторах, кроме того, возникают потери от поперечных токов, т.е. токов между стержнями, замыкающихся через листы сердечника ротора. Эти: токи особенно заметны при скошенных пазах ротора. В таких двигателях, как показывает опыт эксплуатации, добавочные потери при нагрузке могут достигать 1 — 2 % ( а в некоторых случаях даже больше) от подводимой мощности. ГОСТ устанавливает средние расчетные добавочные потери при номинальной нагрузке, равные 0 5 % номинальной потребляемой мощности. [6]

Добавочные потери при нагрузке асинхронных двигателей возникают за счет действия потоков рассеяния, пульсаций индукции в воздушном зазоре, ступенчатости кривых распределения МДС обмоток статора и ротора и ряда других причин. [7]

Добавочные потери при нагрузке асинхронных двигателей возникают за счет действия потоков рассеяния, пульсаций индукции в воздушном зазоре, ступенчатости кривых распределения МДС обмоток статора и ротора и ряда других причин. Эти токи особенно заметны при скошенных пазах ротора. ГОСТ устанавливает средние расчетные добавочные потери при номинальной нагрузке, равные 0 5 % номинальной потребляемой мощности. [8]

Зависимость угла да от нагрузки асинхронного двигателя была рассмотрена в § 12 — 9 при анализе векторной диаграммы двигателя. На холостом ходу угол ср велик, так как двигатель потребляет почти чисто реактивный ток, идущий на создание основного магнитного потока машины. [9]

В этой схеме измерение нагрузки асинхронного двигателя производится с помощью измерительного трансформатора ТМ с двумя первичными обмотками — тока и напряжения. [10]

Таким образом, повышение коэффициента нагрузки асинхронных двигателей приводит благодаря повышению коэффициента мощности к уменьшению суммарных приведенных потерь активной мощности. [12]

Как изменяется скольжение при увеличении нагрузки асинхронного двигателя. [13]

Читать еще:  Bmw 5 серии какой двигатель лучше

Из аналитических расчетов известно, что чем больше нагрузка асинхронных двигателей за реактором, тем больше должно быть сопротивление реактора для надежной работы аппаратуры по динамическим условиям токов короткого замыкания. Еще в большей степени на выбор реакторов влияет нагрузка синхронных двигателей. [14]

Работа асинхронного двигателя — НАУКА И МЫ

Работа асинхронного двигателя

Работа асинхронного двигателя под нагрузкой. В рабочем режиме ротор двигателя вращается с числом оборотов в минуту n2, меньшим числа оборотов n1 магнитного поля статора, вращающегося в том же направлении, что и ротор. Поэтому магнитное поле, имеющее большую скорость, скользит относительно ротора с числом оборотов, равным разности чисел оборотов поля и ротора, т. е. ns = n1 – n2 [об/мин]. Относительное отставание ротора от вращающегося магнитного поля статора характеризуется скольжением S. Скольжение представляет собой отношение числа оборотов магнитного поля статора относительно вращающегося ротора к числу оборотов поля статора в пространстве, т. е.ns n1 – n2S= ——- = ———- n1 n1

Эта формула определяет скольжение в относительных единицах. Скольжение может быть также выражено в процентах:n1 – n2S% = ————- x 100.n1

Если ротор неподвижен (n2=0) , то скольжение равно единице или 100%. Если ротор вращается синхронно с магнитным полем, т.е. с одинаковой скоростью, то скольжение равно нулю. Таким образом, чем больше скорость вращения ротора, тем меньше скольжение. В рабочем режиме асинхронного двигателя скольжение мало. У современных асинхронных двигателей скольжение при полной нагрузке составляет 3-5%, т. е. ротор вращается с числом оборотов, незначительно отличающимся от числа оборотов магнитного поля статора. При холостом ходе, т. е. при отсутствии нагрузки на валу, скольжение ничтожно мало и может быть принято равным нулю.

Вращающий момент асинхронного двигателя создаётся при взаимодействии вращающегося магнитного поля статора с токами в проводниках обмотки ротора. Поэтому вращающий момент зависит как от магнитного потока статора Фм , так и от силы тока в обмотке ротора I2. Однако в создании вращающегося момента участвует только активная мощность, потребляемая машиной из сети. Вследствие этого вращающий момент зависит не от силы тока в обмотке ротора I2 а только от его активной составляющей, т.е. I2 cosф2, где ф2 – фазный угол между э.д.с. и током в обмотке ротора.

Таким образом, вращающий момент асинхронного двигателя определяется следующим выражением :

M=CФ м I2cosф2,Где С – конструктивная постоянная машины, зависящая от числа её полюсов и фаз, числа витков обмотки статора, конструктивного выполнения обмотки и принятой системы единиц.

При условии постоянства приложенного напряжения магнитный поток остаётся также почти постоянным при любом изменении нагрузки двигателя. Вращающийся момент двигателя пропорционален квадрату приложенного напряжения, так как пропорциональны напряжению как магнитный поток, так и сила тока в роторе. Поэтому изменение напряжения в сети вызывает значительное изменение вращающего момента.

О КОМПАНИИ

Основные направления совершенствования асинхронных электродвигателей общего назначения

Основные направления совершенствования асинхронных электродвигателей общего назначения

Низковольтные асинхронные электродвигатели общего назначения мощностью 0,25. 400 кВт, именуемые во всем мире стандартные асинхронные двигатели, составляют основу силового электропривода, применяемого во всех областях человеческой деятельности. Они потребляют до 40% производимой электроэнергии, поэтому их совершенствованию в промышленно развитых странах придают большое значение. Каковы основные направления на этом пути – поделились со СМИ эксперты «НИПТИЭМ».

В настоящее время внутренний рынок России, призванный отражать интересы потребителей, не формулирует сколько-нибудь определенных требований к стандартным асинхронным двигателям, кроме ценовых. В связи с этим для выявления тенденций их совершенствования будем исходить из требований внешнего рынка, на котором уже работают российские заводы, и из достижений основных зарубежных производителей стандартных асинхронных двигателей.

ЭНЕРГОСБЕРЕЖЕНИЕ

Ведущие фирмы-производители выпускают энергосберегающие стандартные асинхронные двигатели мощностью 15-30 кВт и более. В этих двигателях потери электроэнергии снижены не менее, чем на 10 % по сравнению с ранее производимыми двигателями с «нормальным» КПД (h). При этом КПД энергосберегающего двигателя можно определить как hэ = h / [1 — е (1 — h)], где е — относительное снижение суммарных потерь в двигателе. Очевидно, производство энергосберегающих электродвигателей связано с дополнительными затратами, которые можно оценить с помощью коэффициента удорожания Ку = 1 + (1 — h) е2.100. Результаты расчетов показывают, что в условиях России дополнительные затраты, связанные с приобретением энергосберегающих электродвигателей, окупаются за счет экономии электроэнергии за 2-3 года в зависимости от мощности двигателя. При этом срок окупаемости более мощных двигателей меньше, так как эти двигатели имеют большую годовую наработку и более высокий коэффициент загрузки. В ряде стран вопросы энергосбережения в стандартных асинхронных двигателях связывают не столько со снижением эксплуатационных затрат, сколько с экологическими проблемами, обусловленными производством электроэнергии.

ПОВЫШЕНИЕ РЕСУРСА. СНИЖЕНИЕ УРОВНЯ ШУМА

С энергосбережением — уменьшением потерь в асинхронном двигателе — неразрывно связано повышение его ресурса вследствие снижения температуры его обмоток. При применении системы изоляции класса нагревостойкости F (qб = 100оС и qб — q = 20°С, где qб и q — превышение температуры обмоток над температурой окружающей среды, соответствующее базовому ресурсу и фактическое) теоретический ресурс системы изоляции обмотки увеличивается в 4 раза согласно известному соотношению Тсл = Тсл.б ехр [-0,1 ln2 (qб — q)], где Тсл и Тсл.б — средний и базовый ресурсы системы изоляции обмоток, причем Тсл.б = 20.103 ч. В действительности ресурс обмотки определяется не только термодеструкцией, но и другими факторами (коммутационным перенапряжением, механическими усилиями, влажностью и др.), поэтому он увеличивается не так значительно, но при этом не менее, чем в 2 раза. Руководствуясь этими соображениями, европейские фирмы-производители стандартных асинхронных двигателей придерживаются правила применения систем изоляции класса нагревостойкости F (qб = 100°С) при превышении температуры обмоток, соответствующем базовому для систем изоляции класса нагревостойкости В (qб = 80°С). Снижение температуры обмоток стандартных асинхронных двигателей способом охлаждения ICO141 МЭК 60034-6 позволяет в уменьшить диаметр вентилятора наружного обдува и существенно (до 5 дБ(А)) снизить уровень вентиляционного шума, который в двигателях с частотой вращения 3000 и 1500 мин-1 является определяющим.

СЕРВИС-ФАКТОР

Декларирование сервис-фактора означает, что двигатель, работающий при номинальных напряжении и частоте может быть перегружен до мощности, получаемой путем умножения номинального значения на сервис-фактор. Обычно сервис-фактор принимают равным 1,15, реже — 1,1. При этом превышение температуры обмоток должно быть не более 90 и 115°С для систем изоляции класса нагревостойкости В и F соответственно. Применение двигателей с сервис-фактором позволяет:
— избежать переустановленной мощности для двигателей, работающих с систематическими перегрузками до 15 %;
— эксплуатировать двигатели в сетях с существенными колебаниями напряжения без снижения нагрузки;
— эксплуатировать двигатели при повышенной температуре окружающей среды без снижения нагрузки.
Результаты расчетов показывают, что при равномерном распределении перегрузок во всем временном интервале допустимая суммарная длительность работы двигателя, имеющего сервис-фактор 1,15, с 15 %-ной перегрузкой составляет треть ресурса. И в этом случае энергосберегающие двигатели с изоляцией класса нагревостойкости F и превышением температуры обмоток, соответствующем классу В, автоматически имеют сервис-фактор 1,15.

Читать еще:  Датчики температуры в двигателе opel

УНИВЕРСАЛЬНОСТЬ ПИТАНИЯ

В настоящее время большинство стандартных асинхронных двигателей в России выпускают на напряжение сети 380 В при частоте 50 Гц. Вместе с тем МЭК предусматривает к 2003 г. переход на напряжение 400 В (публикация МЭК 60038). При этом необходимо будет обеспечивать длительную работу двигателя при отклонениях напряжения от номинального ±10 % (сейчас это ограничение установлено на уровне ±5 % — публикация МЭК 60031-1). Для обеспечения работы двигателя при пониженном на 10 % напряжении питания потребуются новые подходы при проектировании с целью создания соответствующих температурных запасов. Следует отметить, что и в этом случае для энергосберегающих двигателей с сервис-фактором 1,15 проблем не будет. Все европейские фирмы уже производят стандартные асинхронные двигатели на напряжение 400 В, российские заводы — пока только для поставок на экспорт. Одним из насущных требований европейского рынка является обеспечение возможности работы двигателя при напряжении 400 В и частоте 50 Гц от сети 480 В и 60 Гц при повышенной на 20 % номинальной мощности. Такую возможность также следует предусматривать при проектировании новых машин.

ЭЛЕКТРОМАГНИТНАЯ СОВМЕСТИМОСТЬ

Вопросы электромагнитной совместимости (ЭМС) в настоящее время приобретают все большее значение при освоении и сертификации новых серий электродвигателей. ЭМС электродвигателя определяется его способностью в реальных условиях эксплуатации функционировать при воздействии случайных электрических помех и при этом не создавать недопустимых радиопомех другим средствам. Помехи от электродвигателя могут возникать в присоединенных к нему цепях питания, заземления, управления, в окружающем пространстве. ГОСТ Р 50034-92 устанавливает нормы на уровни устойчивости двигателей к отклонениям напряжения и частоты, несимметрии и несинусоидальности питающего трехфазного напряжения, а также методы испытания двигателей на устойчивость к помехам. Вместе с тем при проектировании и производстве асинхронных двигателей для внешнего рынка необходимо руководствоваться публикацией МЭК 1000-2-2, в которой установлены уровни совместимости для низкочастотных распространяющихся по проводам помех и передаче сигналов в низковольтных системах электропитания. При этом измерительное оборудование должно обеспечивать и спектральный анализ на базе компьютерных информационно-измерительных систем.

ВОЗМОЖНОСТЬ РАБОТЫ В СИСТЕМАХ РЕГУЛИРУЕМОГО ЭЛЕКТРОПРИВОДА

При работе от преобразователя частоты (ПЧ) в ряде случаев необходимо предусматривать защиту двигателя от перенапряжения (если это не предусмотрено в системе) путем усиления витковой и корпусной изоляции. Большинство выпускаемых и применяемых в настоящее время ПЧ, рассчитанных на среднюю мощность до 3000 кВт, по своей структуре являются инверторами. Выходное трехфазное напряжение в этих ПЧ формируется методом широтно-импульсной модуляции, что приводит к воздействию на изоляцию (витковую, межфазовую) электродвигателя напряжения импульсной формы, амплитуда которого значительно превышает амплитуду первой гармоники выходного напряжения. Это приводит к преждевременному старению изоляции и снижению срока службы обмотки и двигателя в целом. Увеличение срока службы асинхронного двигателя общепромышленного применения в составе регулируемого привода может и должно быть обеспечено схемотехническими решениями ПЧ или введением специальных фильтрующих устройств в цепь питания электродвигателя. Разработка ПЧ и регулируемого электродвигателя в едином конструктивном исполнении позволяет оптимизировать систему электропривода не только по массогабаритным показателям и удобству обслуживания, но и с позиций единой системы независимого теплоотвода решить вопрос охлаждения машины на малых частотах вращения. При регулировании частоты вращения, превышающей синхронную, следует применять подшипники соответствующей быстроходности. В связи с этим в публикации МЭК 60034- 1 предусмотрено значительное увеличение предельных скоростей, допускаемых для стандартных асинхронных двигателей.

Авторы: Кравчик А.Э., д.т.н., Андрианов М.В., к.т.н.

Нагрузочная характеристика карбюраторного двигателя

Зависимости изменения параметров цикла от нагрузки показаны на рисунок а. Удельный расход топлива согласно уравнению зависит от произведения ni и nm.

На холостом ходу вся развиваемая в цилиндрах двигателя индикаторная мощность затрачивается на преодоление внутренних потерь, а эффективная мощность с коленчатого вала двигателя не «снимается», поэтому ge стримится к бесконечности (рис. б).

При переходе от холостого хода к частичным нагрузкам растут значения ni и nm, что приводит к уменьшению ge и в момент наибольшего значения произведения ni и nm удельный расход топлива ge достигает своего минимального значения. При полной нагрузке (ре = 100 %) и близкой к ней индикаторный КПД уменьшается, так как в этом случае двигатель работает на обогащенном составе смеси. который не обеспечивает полного сгорания топлива, т. е. не вся введенная теплота преобразуется в индикаторную работу. Поэтому удельный расход топлива увеличивается при нагрузках более 75 %. Поскольку одним из условий снятия нагрузочной характеристики является постоянство частоты вращения коленчатого вала, то понятно, что каждому значению частоты вращения будет соответствовать своя нагрузочная характеристика.

Рис. Нагрузочные характеристики карбюраторного двигателя: а — зависимости изменения основных параметров цикла от нагрузки; б — зависимости изменения показателей работы двигателя от нагрузки

На рисунке показаны нагрузочные характеристики одного из карбюраторных двигателей при разных частотах вращения коленчатого вала. Если значения минимальных удельных расходов топлива характеристик соединить касательной (штрихпунктирная линия), то получим линию, которая называется экономической или универсальной нагрузочной характеристикой.

В реальных условиях эксплуатации режимы работ, соответствующие экономической характеристике, используются крайне редко, так как в карбюраторном двигателе большинство нагрузок имеют повышенные значения ge, что является их недостатком.

Для улучшения топливной экономичности карбюраторного двигателя используют работу на обедненных смесях или вовсе отказываются от карбюратора и переходят на систему с впрыском топлива.

Так как по условию n = const, то часовой расход топлива Gт согласно уравнению зависит только от отношения nv/а.

Из нагрузочных характеристик видно, что с изменением нагрузки значительно меняется коэффициент наполнения nv, (от 0,18 до 0,23 на холостом ходу и от 0,78 до 0,82 при полной нагрузке). В результате часовой расход топлива растет пропорционально увеличению нагрузки, а резкое его повышение на нагрузках, близких к полной, объясняется началом работы экономайзера.

Рис. Нагрузочные характеристики двигателя ЗИЛ-131 при различных значениях частоты вращения коленчатого вала: 1 — n = 3000 мин^-1; 2 — n = 2500 мин^-1; 3 — n = 2000 мин^-1; 4 — n = 1500 мин^-1; 5 — n = 1000 мин^-1

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector