Arskama.ru

Автомобильный журнал
9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Давление во впускном коллекторе дизельных двигателей

Роль MAP-датчика на дизеле

Атмосферный двигатель внутреннего сгорания, потребляя воздух, создает разряжение во впускном коллекторе, а в случае двигателя с наддувом, наоборот, в коллекторе создается более высокое, по сравнению с атмосферным, давление. Так или иначе это давление должно быть измерено, ведь при оценке нагрузки на двигатель ЭБУ отталкивается именно от величины разряжения или наддува. Как следствие, должно быть впрыснуто строго определённое количество топлива, не больше (чтобы избежать перерасхода) и не меньше (чтобы избежать детонации).

Для измерения абсолютного давления во впускном коллекторе и создан MAP-sensor (manifold absolute pressure) или ДАД (датчик абсолютного давления в коллекторе). На бензиновых ДВС этот датчик совместно с ДМРВ (а иногда вместо него) является ключевым элементом, обеспечивающим правильную работу топливной системы, ведь бензиновый двигатель потребляет различное количество воздуха с нагрузкой и без нее. Дизель же, как мы все знаем, всегда потребляет строго определенное количество воздуха, определяемое в зависимости от своих оборотов.

Тем не менее, для современных дизельных двигателей (особенно турбированных) наличие MAP-датчика практически всегда обязательно. Все дело в том, что в отличие от датчика наддува (boost sensor) MAP-датчик «умеет» мерить как наддув (давление выше атмосферного), так и разряжение, что важно и для правильной работы турбины, и для правильного впрыска электронно-управляемых форсунок.

Как же работает MAP-датчик? Разберем на примере такого изделия от Delphi Technologies. MAP-датчик Delphi Technologies представляет из себя двухкамерный датчик мембранного типа с пьезорезистивным чувствительным элементом. Из одной камеры датчика на заводе откачивается воздух, таким образом в ней создается нулевое давление (вакуум). Вторая (рабочая) камера соединена со впускным коллектором, давление в ней и в коллекторе одинаково. Между камерами установлена гибкая мембрана с пьезорезистивными датчиками. При изменении давления в коллекторе мембрана изменяет свою форму, а пьезорезистор вследствие этого меняет свое сопротивление.Изменяется напряжение и датчик посылает сигнал об изменении давления на ЭБУ.

Мембрана, разделяющая камеры в датчиках Delphi Technologies, выполнена из поликремния и обладает большим ресурсом, а также продолжительное время сохраняет заводскую калибровку. Это позволяет MAP-сенсору дольше выдавать верный сигнал и быть менее склонным к деградации со временем. Для защиты мембраны предусмотрено покрытие из силиконового компаунда, не снижающее подвижность самой мембраны, но предотвращающее механические (пыль, грязь, частицы) или химические повреждения мембраны или датчиков.

Имея возможность измерять давление в широком диапазоне от 0 до 300 кПа (в зависимости от конкретной модели), MAP-датчик может измерить как разряжение, так и давление наддува во впускном коллекторе. Для дизелей, оборудованных турбокомпрессором (а это большинство современных двигателей), наличие MAP-датчика обязательно для правильного управления турбиной. В случае выхода датчика из строя водитель сразу же заметит уменьшение тяги, повышенное дымление двигателя, увеличение расхода топлива.

MAP-датчики производства Delphi Technologies позволяют ЭБУ точно дозировать впрыск топлива и управлять наддувом для обеспечения оптимального режима работы двигателя. Надежная конструкция и проверенный дизайн доказали свою долговечность и неприхотливость в любых условиях эксплуатации.

Принцип работы можно наглядно посмотреть здесь.

Давление во впускном коллекторе дизельных двигателей

Проверка разряжения во впускном коллекторе

Прежде чем приступать к проверке разряжения во впускном коллекторе, рассмотрим работу 4-х тактного двигателя.

1. Такт сжатия.

Поршень идет вверх, рабочая смесь сжимается. Растет давление, повышается температура. Клапана закрыты.
Степень сжатия в бензиновом двигателе подбирается так, что бы температура в конце такта сжатия не превышала температуру самовоспламенения рабочей смеси. Примерная температура составляет 300-400 градусов Цельсия.
В дизельном двигателе сжимается не рабочая смесь, а чистый воздух. Степень сжатия здесь подбирается таким образом, чтобы температура в конце такта сжатия превышала температуру самовоспламенения топлива. После чего происходит его впрыск и начало самовоспламенения.

Примерная температура составляет порядка 700 градусов Цельсия.

2. Рабочий ход.

Смесь воспламенилась. Растет температура, но так как горение происходит в замкнутом объеме, так же повышается давление. Скорость горения составляет порядка 20-40 м/сек (в зависимости от качества смеси). Поэтому воспламенение должно произойти раньше ВМТ (верхней мертвой точки) – так называемый угол опережения зажигания (для бензиновых двигателей) или угол опережения впрыска (для дизельных двигателей). Обычно этот угол составляет порядка 10 градусов до ВМТ. При этом пик максимального давления возникает (за счет конечного времени горения смеси) через 10-12 градусов после ВМТ. Делается это для предотвращения перегрузок цилиндропоршневой группы и защиты от детонации.
Давление Р в камере сгорания создает усилие F на поршень.

F=P*S п
где S п — площадь поршня

Получаемая работа равна:
A = F * L
где A – получаемая работа
F – сила, действующая на поршень
L –перемещение поршня

Итак, получаемая работа на рабочем такте равна:
A= P*L*S
п

При увеличении объема (поршень двигается вниз) давление падает. Зависимость получаемой работы приобретает интегральную зависимость от перемещения поршня, но расчет данной зависимости выходит за рамки данной статьи.
Как видим, чем больше давление в цилиндре, тем больше мы получаем механической работы при одном и том же количестве сжигаемого топлива. Высокофорсированные двигателя имеют большую мощность (а соответственно экономичность), чем низко форсированные.

Дизельные двигатели превосходят бензиновые по этим параметрам из-за более высокой степени сжатия и соответственно более высоких давлений.


3.Такт выпуска (продувки)

Открывается выпускной клапан, поршень двигается вверх, выталкивая отработанные газы. Они выходят через ограниченное отверстие, поэтому давление на такте выпуска превышает атмосферное. Сопротивление на выходе создают: ограниченное отверстие в клапанах, наличие элементов выпускного тракта.

При этом создается противодавление движению поршня и часть энергии, запасенной в маховике, расходуется на преодоление этого противодавления.


4. Такт впуска

Открыт впускной клапан, поршень идет вниз. Свежая смесь поступает в цилиндр через ограниченное сечение впускного клапана и на холостом ходу (ХХ) также через прикрытую дроссельную заслонку. Создается разряжение (давление ниже атмосферного). При движении поршня вниз это создает усилие, мешающее перемещению поршня.

Еще одна часть энергии, запасенная в маховике, уходит на преодоление этого усилия.

Снова наступает такт сжатия. Поршень движется вверх, сжимая смесь. Необходимая для этого энергия опять берется из энергии вращения маховика, запасенной во время рабочего хода.
Таким образом, энергетический баланс неутешителен: мы получаем механическую работу только в одном такте. В трех других мы эту работу тратим.

Читать еще:  Чиповать двигатель что это значит

Способы повышения получаемой работы.
Способ только один – повышение давления в цилиндре. При его повышении мы получаем большую работу, но рискуем получить детонацию. Поэтому степень сжатия, угол зажигания (впрыска) ограничено. Дизельное топливо более стойко к детонации, поэтому дизеля способны работать при больших давлениях (получать большую механическую работу при равных затратах топлива)

Способы минимизации потерь.
1. Такт выпуска.

Необходимо уменьшить гидростатическое сопротивление выходу газов. Применение много клапанных двигателей и содержание в порядке выхлопного тракта позволяет частично решить эту проблему.

2. Такт впуска.
Уменьшение гидростатического сопротивления можно получить путем применения много клапанных двигателей.

3. Такт сжатия.
Неизбежные потери.

Рассмотрим поподробнее, что происходит во впускном коллекторе во время рабочего цикла на холостом ходу. Когда закрыт впускной клапан, давление в нем равно атмосферному. На такте впуска смесь поступает в цилиндр через ограниченное отверстие в дроссельной заслонке. Во впускном коллекторе возникает разряжение (абсолютное давление ниже атмосферного). Впускной клапан закрывается, давление снова возрастает. Мы можем видеть пульсации давления. Но так как одноцилиндровые двигателя встречаются достаточно редко, пульсации давления (разряжения) от разных цилиндров накладываются друг на друга и во впускном коллекторе возникает какое то среднее давление, которое ниже атмосферного (т.н. «разряжение»).

Термины «абсолютное давление» и «разряжение» вызывают путаницу даже у производителей приборов для измерения разряжения (вакуумметров). Очень часто приходиться слышать фразу «отрицательное давление». Это неверно — давление либо есть, либо его нет (абсолютный вакуум). Давление отрицательным быть не может! Абсолютное давление в вакууме равно нулю, а атмосферное давление равно 100 кРа (100 кило Паскалей). Во впускном коллекторе на холостом ходу (дроссельная заслонка прикрыта) ниже атмосферного (т.е. ниже 100 кРа), но выше абсолютного вакуума (0 кРа). Разряжением называют разницу между атмосферным давлением и фактическим давлением во впускном коллекторе.

Производители автомобилей нормируют абсолютное давление во впускном коллекторе на холостом ходу при исправном двигателе на уровне 20 кРа (автомобили типа ВАЗ – на уровне 40 кРа). Разряжение при этом составляет 80 кРа (100 кРа — 20 кРа = 80 кРа). Для ВАЗов соответственно 60 кРа (увы, технология изготовления не позволяет получить разряжение, соответствующее уровню мировых производителей).

Абсолютное давление в 20 кРа (разряжение 80 кРа) считается нормой, но на практике для исправного двигателя можно считать допустимым абсолютное давление 30 кРа (разряжение 70 кРа). Автору данной статьи всего несколько раз попадались автомобили с идеальным абсолютным давлением (разряжением). Давление в 40 кРа (разряжение 60 кРа) допустимо только для ВАЗов. При давлении в 50 кРа – имеют место серьезные проблемы в двигателе.

Факторы, влияющие на абсолютное давление (разряжение) будут рассмотрены в следующей части.

Рязанов Федор
© Легион-Автодата

Устройство, принцип работы и тюнинг впускного коллектора

Воздух или топливно-воздушная смесь, в зависимости от типа двигателя (дизельный, инжекторный или карбюраторный) попадает в цилиндры через впускной коллектор. Основное предназначение впускного коллектора заключается в том, чтобы обеспечить равномерное распределение воздуха или рабочей смеси между цилиндрами. От этого напрямую зависит эффективность мотора. Помимо этого, на коллекторе могут крепиться другие узлы, например, карбюратор или дроссельная заслонка.

Принцип его работы довольно прост: воздух или его смесь с горючим, попадая внутрь через впускное отверстие, делится на несколько потоков, по числу цилиндров двигателя. Поршни, двигаясь вниз, создают в коллекторе разрежение, которое может достигать больших значений. Этот частичный вакуум используется также для нейтрализации картерных газов. Они через систему вентиляции картера двигателя попадают во впускной коллектор, смешиваются с топливно-воздушной смесью или воздухом и сжигаются в цилиндрах.

До недавнего времени основным материалом для изготовления впускного коллектора были алюминий, железо и чугун. Это создавало определенные сложности. Дело в том, что сам коллектор во время работы мотора сильно нагревается и нагревает воздух, который в данный момент находится внутри него. Воздух, в свою очередь, расширяется и поступает в цилиндры в меньшем объеме, вследствие чего повышается расход горючего и ухудшаются эксплуатационные характеристики двигателя.

В качестве альтернативы металлу, с конца 90-х годов, теперь уже прошлого века, на многих автомобилях применяются композитные материалы на основе пластика. Из-за низкой теплопроводности, такой впускной коллектор нагревается не так сильно, в результате цилиндры лучше наполняются воздухом, и повышается мощность мотора в пересчете на единицу топлива.

  1. Турбулентность во впускном коллекторе
  2. Форма и объемная эффективность
  3. Системы изменения геометрии впускного коллектора
  4. Впускной коллектор переменной длины
  5. Впускной коллектор переменного сечения
  6. Тюнинг коллектора
  7. При чем здесь форма?
  8. «Внутренние» работы

Турбулентность во впускном коллекторе

Данный пункт не относится к моторам с непосредственным впрыском. Горючее попадает во впускной коллектор в мелкораспыленном виде, после чего смешивается с воздухом. Некоторая его часть может осесть на стенках впускного коллектора под воздействием электростатических сил. Это явление крайне нежелательно, поскольку в результате в цилиндры попадет намного меньше топлива, и рассчитанная электронным блоком управления пропорция «воздух-топливо» будет нарушена в сторону увеличения объемной доли воздуха.

Бороться с конденсацией горючего помогает турбулентность. Под ее воздействием горючее лучше распыляется, и происходит более полное его сгорание. Как следствие возрастает мощность мотора, и снижается риск детонации. Чтобы обеспечить появление турбулентности, внутреннюю поверхность впускного коллектора не полируют, а наоборот делают шершавой. Здесь важно добиться оптимального значения турбулентности, поскольку с ее усилением начинают возникать перепады давления внутри впускного коллектора, и мощность двигателя падает.

Форма и объемная эффективность

Одним из важнейших параметров впускного коллектора, определяющим эффективность, является его форма. Основное правило, которого придерживаются все инженеры, гласит, что впускной коллектор не должен иметь никаких угловатых форм, так как это спровоцирует перепады давления и, как следствие, худшее наполнение цилиндров воздухом или рабочей смесью. Поэтому, все коллекторы имеют сглаженные переходы между сегментами и округлые формы.

Читать еще:  Характеристики нового двигателя нивы

В подавляющем большинстве нынешних коллекторов применяют раннеры. Представляют они из себя отдельные трубы, расходящиеся от центрального входа коллектора на все имеющиеся впускные каналы в головке блока цилиндров. Их задача состоит в том, чтобы использовать такое явление, как резонанс Гельмгольца. Принцип работы конструкции выглядит следующим образом.

В момент, когда происходит всасывание, воздух проходит на весьма высокой скорости через открытый впускной клапан. Когда клапан закрывается, воздух, не успевший попасть в цилиндр, сохраняет большой импульс, а значит давит на клапан, в результате чего образуется зона высокого давления. Затем происходит выравнивание давления, с более низким давлением в коллекторе. Из-за влияния сил инерции, выравнивание происходит с колебаниями: вначале воздух попадает в раннер под давлением более низким, чем в коллекторе, затем под более высоким. Происходит сей процесс со скоростью звука, и до того, как впускной клапан откроется в очередной раз, колебания могут совершаться многократно.

Изменение давления вследствие резонансных колебаний воздуха тем больше, чем меньше диаметр раннера. Когда поршень движется вниз, давление на выходе раннера уменьшается. Затем этот низкий импульс давления доходит до входа коллектора, где превращается в импульс высокого давления, который проходит в обратном направлении через раннер и клапан, после чего клапан закрывается.

Для достижения максимального эффекта от резонанса, впускной клапан должен открываться в строго определенный момент, иначе результат будет обратный. Добиться этого довольно сложно. Газораспределительный механизм является динамическим узлом, и режим его работы находится в самой прямой зависимости от частоты вращения коленвала. Импульсы синхронизируются статично, синхронизация зависит от длины раннеров. Частично проблема решается тем, что длина подбирается под определенный диапазон оборотов, на которых достигается наибольший крутящий момент. Другой вариант — применение систем изменения геометрии впускного коллектора и электронного управления ГРМ.

Системы изменения геометрии впускного коллектора

Поскольку, фиксированная длина впускного коллектора, обеспечивает качественное наполнение цилиндров только в ограниченных диапазонах частот вращений коленчатого вала, более предпочтительным считается впускной коллектор, имеющий систему изменения геометрии. Изменяться может либо его длина, либо диаметр, либо оба параметра.

Впускной коллектор переменной длины

Применяется на безнаддувных силовых агрегатах, как бензиновых, так и дизельных. Когда мотор работает на низких оборотах, длина коллектора должна быть большой для достижения высокого крутящего момента и приемистости, на высоких – маленькой, чтобы силовой агрегат мог развить максимальную мощность. Для изменения геометрии применяется клапан, входящий в систему управления двигателем. Он переключает коллектор с одной длины на другую.

Работает впускной коллектор переменной длины следующим образом. Когда закрывается впускной клапан, воздух, оставшийся в коллекторе, начинает совершать колебания, частота которых пропорциональна длине самого коллектора и оборотам двигателя. Когда возникает резонанс, появляется эффект нагнетания (резонансный наддув). В результате, воздух подается в открывающиеся впускные клапаны под увеличенным давлением.

В моторах, оснащенных системами наддува, подобный впускной коллектор с изменяемой геометрией не применяется, поскольку нагнетание воздуха в цилиндры происходит принудительно. В таких силовых агрегатах применяются максимально короткие коллекторы, благодаря чему уменьшаются габариты и стоимость производства двигателей.

Система изменения геометрии впускного коллектора, у разных производителей называется по-разному:

  1. BMW называют ее Differential Variable Air Intake (DIVA);
  2. у Ford это Dual-Stage Intake (DSI);
  3. в автомобилях Mazda система носит название Variable Inertia Charging System (VICS), в ряде случаев Variable Resonance Induction System (VRIS).

Впускной коллектор переменного сечения

Применяется на любых моторах, в том числе оснащенных наддувом. С уменьшением поперечного сечения возрастает скорость воздуха, проходящего через коллектор, следовательно, улучшается смесеобразование и более полно сгорает рабочая смесь.

Система изменения геометрии впускного коллектора имеет следующее устройство. Впускной канал каждого цилиндра делится на два – по одному на каждый впускной клапан, внутри одного из которых находится заслонка. Заслонка открывается и закрывается посредством вакуумного регулятора или электродвигателя.

Когда мотор работает под небольшой нагрузкой, заслонки закрыты, воздух подается по одному каналу и попадает в цилиндр только через один клапан. В цилиндре при этом возникают завихрения, благодаря которым улучшается смесеобразование и качество сгорания топлива. Под нагрузкой заслонки открываются, и воздух подается через оба канала, мощность двигателя при этом возрастает.

Существует много вариаций подобных систем, например, у Opel система изменения геометрии впускного коллектора носит название Twin Port, у Ford есть два типа — Intake Runner Control (IMRC), Charge Motion Control Valve (CMCV), у Toyota и Volvo – Variable Induction System или Intake System (VIS).

Тюнинг коллектора

Тюнинг двигателя – это целый комплекс работ по доработке отдельных его узлов и деталей. Впускной коллектор также можно доработать, чтобы улучшить эксплуатационные характеристики мотора.

Тюнинг данной детали имеет два направления:

  • на преодоление негативного влияния его формы;
  • на доработку внутренней поверхности.

При чем здесь форма?

Поток воздуха или рабочей смеси в коллекторе неравномерен в силу его формы. Если коллектор несимметричный, то наибольшее количество воздуха или топливно-воздушной смеси будет попадать в первый цилиндр, а в каждый следующий все меньше. У симметричного также есть недостаток: там наибольшее количество воздуха попадает в средние цилиндры. В обоих случаях цилиндры работают неравномерно на смеси различного качества. Как следствие – падает мощность двигателя.

Тюнинг, в данном случае, подразумевает замену штатного впускного коллектора системой многодроссельного впуска. Ее устройство таково, что воздушные потоки, подающегося в цилиндры, не зависят друг от друга, поскольку каждый из цилиндров оснащается собственной дроссельной заслонкой.

«Внутренние» работы

При недостатке денежных средств, тюнинг можно провести и более дешево, почти даром. Внутри коллекторов практически всегда находится большое число неровностей и приливов, а поверхность шероховатая. Все вместе это вызывает ненужные завихрения, мешающие качественному наполнению цилиндров. При размеренной езде это явление практически незаметно, но если хочется добиться от мотора большей эффективности, с этими недостатками нужно бороться.

Тюнинг штатного впускного коллектора заключается в шлифовке его внутренней поверхности, с целью удаления приливов и шероховатостей. Шлифовать нужно не до появления зеркала, а только до достижения однородного состояния всей поверхности. Если переусердствовать, то капли горючего будут конденсироваться на стенках и тюнинг даст совершенно противоположный результат.

Читать еще:  Шевроле авео т250 троит двигатель

Напоследок, чтобы тюнинг был максимально полным, нужно обратить внимание на место сопряжения коллектора с головкой блока цилиндров. Нередко в этом месте остается ступенька, мешающая нормальному ходу воздушного потока, которую необходимо устранить (с этого начинается тюнинг ГБЦ).
» alt=»»>

Дизельный двигатель зимой: советы, нюансы, правила

Современные дизельные двигатели разбивают старые мифы о том, что топливо для них является уделом медленных и чадящих грузовиков. Даже в России, где культура использования дизеля развита не так хорошо, как в Европе, в отдельных сегментах его доля оказывается очень высокой.

По данным аналитического агентства «Автостат», за девять месяцев 2019 г. в России было продано почти 100 тыс. дизельных легковушек, что составляет более 8% парка, а в сегменте внедорожников и больших кроссоверов она превышает 50%. При этом доля дизельных машин у бренда BMW в России составляет 70,6%, а Land Rover продает 79% таких автомобилей — хороший дизель обходит бензиновые моторы даже в сегменте автомобилей для водителя.

Если в бензиновом двигателе горючая смесь воздуха и топлива формируется во впускном коллекторе, подается в цилиндр и там воспламеняется с помощью свечи зажигания, то в дизельном смесь самовоспламеняется от сжатия после того, как впрыскивается под высоким давлением в цилиндр с уже сжатым и нагретым воздухом, мгновенно образуя горючую смесь.

В дизельном двигателе свечи зажигания не используются вовсе, а само топливо испаряется медленнее, поэтому вероятность возгорания минимальна. Благодаря использованию более жесткого и прочного блока цилиндров и элементов цилиндропоршневой группы дизельные моторы в целом долговечнее бензиновых, а сама конструкция менее требовательная к обслуживанию.

Главное преимущество дизеля — экономичность: при примерно равных мощностных характеристиках дизельный двигатель потребляет на треть меньше топлива, чем бензиновый. Даже те, кто не считает затраты на топливо, ценят большие пробеги без необходимости тратить время на заправках. Но важно при этом выбирать качественное топливо вроде «Дизель Опти» c улучшенными характеристиками от АЗС «Газпромнефть» — оно напрямую влияет на экономичность.

Дизельные моторы отличаются более высокой тяговитостью и большим крутящим моментом на низких оборотах. Это значит, что автомобиль с таким двигателем быстрее реагирует на акселератор и легко ускоряется в городском потоке, не тратя время на переключения передач. Эта легкость с лихвой компенсирует более спокойное поведение на высоких оборотах, так как 99% времени автомобиль проводит в потоке транспорта, а не на треке. Кроме того, характеристики дизеля удобнее на бездорожье, где требуется крепкая и легко контролируемая тяга.

Проблема зимнего пуска дизельного двигателя напрямую связана со свойствами самого топлива. Если летний дизель густеет при -5 градусах и не прокачивается через фильтры и трубопроводы топливной системы, то зимний может работать и при -45 градусах. В итоге любой исправный дизельный автомобиль с сезонным топливом и качественным моторным маслом пускается так же легко, как бензиновый.

Высокая эффективность дизельных двигателей обуславливает более медленный прогрев силовой установки, поэтому считается, что зимой они не могут нормально прогреть салон машины. На самом деле, любой современный мотор, включая бензиновый, не спешит отдавать тепло, но эта проблема легко решается двумя способами. Во-первых, термостаты эффективно перераспределяют тепло двигателя, а во-вторых, почти все дизельные машины комплектуются дополнительными электрическими обогревателям салона, благодаря которым тепло начинает поступать в первые минуты после пуска.

Тем, кто любит садиться в уже теплый автомобиль, можно посоветовать систему дистанционного пуска, но лучше поставить более экологичный и экономичный предпусковой подогреватель, который работает на том же дизеле, но тратит его только на обогрев салона и прогрев охлаждающей жидкости двигателя. Такую опцию можно установить на все дизельные автомобили штатно или в специализированных мастерских.

Для облегчения зимнего пуска дизель использует свечи накаливания — устройства, которые быстро прогревают камеру сгорания в течение нескольких секунд. После поворота ключа зажигания на панели приборов зажжется символ работы свечей (обычно спираль), который гаснет через две-пять секунд в зависимости от температуры двигателя — можно включать стартер. На автомобилях с кнопкой пуска двигателя все еще проще: после нажатия клавиши система сама выдержит нужную паузу до включения стартера.

В особенно холодных условиях можно несколько раз подряд включить свечи накаливания, поворачивая ключ зажигания, но не включая стартер, либо нажимая кнопку пуска без удержания педали тормоза (стартер в этом случае не включится). Но это уже избыточные меры для очень холодных зим, потому что современные дизели при использовании зимней солярки и правильных масел легко пускаются с первого раза после ночной стоянки даже в -30 градусов.

Зимой дизель следует заправлять исключительно зимним дизтопливом, поэтому на крупных сетевых АЗС всегда тщательно соблюдают сезонность. Современные двигатели очень требовательны к качеству топлива, поэтому оно должно соответствовать всем действующим стандартам. Хорошее топливо не только обеспечивает надежный пуск, но и чистит топливную систему от нагара и отложений, заметно повышает экономичность машины и уменьшает стоимость ее содержания. Именно так работает «Дизель Опти», который реализуется на заправках сети «Газпромнефть».

Еще одним преимуществом фирменного топлива является стабильность его характеристик на любой заправки сети. Так, во время испытаний топлива «Дизель Опти» подопытный Toyota Land Cruiser 200 заправлялся в разных регионах страны при температурах от -5° до +25° и демонстрировал абсолютную стабильность характеристик динамики, расхода и легкости пуска. После 7000 км пробега топливная система была разобрана, и инженеры отметили ее идеальное состояние, а некоторые характеристики даже улучшились благодаря очищающим свойствам топлива.

Кроме того, топливо «Опти» из года в год подтверждает свое высокое качество в экстремальном ралли-марафоне «Шелковый путь», который проходит по территории России, Монголии и Китая. Сеть АЗС «Газпромнефть» заправляет автомобили организаторов и участников ралли, заодно тестируя твое топливо в жесточайших условиях песчаных пустынь, безлюдных степей и крепких утренних морозов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector