Arskama.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель 400 шагов на оборот

Двигатель 400 шагов на оборот

Гибридные двигатели являются более дорогими, чем двигатели с постоянными магнитами, зато они обеспечивают меньшую величину шага, больший момент и большую скорость. Типичное число шагов на оборот для гибридных двигателей составляет от 100 до 400 (угол шага 3.6 — 0.9 град.). Гибридные двигатели сочетают в себе лучшие черты двигателей с переменным магнитным сопротивлением и двигателей с постоянными магнитами. Ротор гибридного двигателя имеет зубцы, расположенные в осевом направлении (рис. 5).

Рис. 5. Гибридный двигатель.

Ротор разделен на две части, между которыми расположен цилиндрический постоянным магнит. Таким образом, зубцы верхней половинки ротора являются северными полюсами, а зубцы нижней половинки — южными. Кроме того, верхняя и нижняя половинки ротора повернуты друг относительно друга на половину угла шага зубцов. Число пар полюсов ротора равно количеству зубцов на одной из его половинок. Зубчатые полюсные наконечники ротора, как и статор, набраны из отдельных пластин для уменьшения потерь на вихревые токи. Статор гибридного двигателя также имеет зубцы, обеспечивая большое количество эквивалентных полюсов, в отличие от основных полюсов, на которых расположены обмотки. Обычно используются 4 основных полюса для 3.6 град. двигателей и 8 основных полюсов для 1.8- и 0.9 град. двигателей. Зубцы ротора обеспечивают меньшее сопротивление магнитной цепи в определенных положениях ротора, что улучшает статический и динамический момент. Это обеспечивается соответствующим расположением зубцов, когда часть зубцов ротора находится строго напротив зубцов статора, а часть между ними. Зависимость между числом полюсов ротора, числом эквивалентных полюсов статора и числом фаз определяет угол шага S двигателя:

где Nph — чило эквивалентных полюсов на фазу = число полюсов ротора,
Ph — число фаз,
N — полное количество полюсов для всех фаз вместе.

Ротор показанного на рисунке двигателя имеет 100 полюсов (50 пар), двигатель имеет 2 фазы, поэтому полное количество полюсов — 200, а шаг, соответственно, 1.8 град.

Продольное сечение гибридного шагового двигателя показано на рис. 6. Стрелками показано направление магнитного потока постоянного магнита ротора. Часть потока (на рисунке показана черной линией) проходит через полюсные наконечники ротора, воздушные зазоры и полюсный наконечник статора. Эта часть не участвует в создании момента.

Рис. 6. Продольный разрез гибридного шагового двигателя.

Как видно на рисунке, воздушные зазоры у верхнего и нижнего полюсного наконечника ротора разные. Это достигается благодаря повороту полюсных наконечников на половину шага зубъев. Поэтому существует другая магнитная цепь, которая содержит минимальные воздушные зазоры и, как следствие, обладает минимальным магнитным сопротивлением. По этой цепи замыкается другая часть потока (на рисунке показана штриховой белой линией), которая и создает момент. Часть цепи лежит в плоскости, перпендикулярной рисунку, поэтому не показана. В этой же плоскости создают магнитный поток катушки статора. В гибридном двигателе этот поток частично замыкается полюсными наконечниками ротора, и постоянный магнит его «видит» слабо. Поэтому в отличие от двигателей постоянного тока, магнит гибридного двигателя невозможно размагнитить ни при какой величине тока обмоток.

Величина зазора между зубцами ротора и статора очень небольшая — типично 0.1 мм. Это требует высокой точности при сборке, поэтому шаговый двигатель не стоит разбирать ради удовлетворения любопытства, иначе на этом его срок службы может закончиться.
Чтобы магнитный поток не замыкался через вал, который проходит внутри магнита, его изготавливают из немагнитных марок стали. Они обычно обладают повышенной хрупкостью, поэтому с валом, особенно малого диаметра, следует обращаться с осторожностью.

Для получения больших моментов необходимо увеличивать как поле, создаваемое статором, так и поле постоянного магнита. При этом требуется больший диаметр ротора, что ухудшает отношение крутящего момента к моменту инерции. Поэтому мощные шаговые двигатели иногда конструктивно выполняют из нескольких секций в виде этажерки. Крутящий момент и момент инерции увеличиваются пропорционально количеству секций, а их отношение не ухудшается.

Существуют и другие конструкции шаговых двигателей. Например, двигатели с дисковым намагниченным ротором. Такие двигатели имеют малый момент инерции ротора, что в ряде случаев важно.

CNC-DESIGN

В корзине пусто!

Шаговые двигатели выбор и расчет основных параметров

Шаговые двигатели выбор и расчет основных параметров.
Шаговый двигатель — это электромеханическое устройство, которое преобразует электрические импульсы в дискретные механические движения. Вал шагового двигателя вращается с дискретным шагом, когда на него подаются управляющие импульсы в правильной последовательности. Вращение двигателей напрямую зависит от входящих импульсов, так же они напрямую управляют направлением и скоростью вращения вала двигателя.

Преимущества и недостатки шагового двигателя:
Преимущества:
— угол поворта двигателя пропорционален входным импульсам;
— фиксация положения при остановке током удержания;
— точное позиционирование и повторяемость движения, так как большинство шаговых двигателей имеют точность 3-5% шага, и эта ошибка не суммируется от одного шага к следующему;
— низкая инертность при запуске, остановке и реверсе;
— высокая надежность, поскольку в двигателе отсутствуют контактные щетки, поэтому срок службы двигателя в основном зависит от срока службы подшипников;
— реакция двигателя на цифровые входные импульсы обеспечивает управление без обратной связи, что делает систему более простой и, следовательно, более экономичной;
— можно достичь очень низкой скорости синхронного вращения с нагрузкой, которая напрямую связана с валом;
— можно реализовать широкий диапазон скоростей вращения, так как скорость пропорциональна частоте входных импульсов;
— шаговые двигатели дешевле серводвигателей.

Недостатки:
— может возникнуть явление резонанса, при некорректном расчете узла или системы управления;
— двигатель непрост вэксплуатации наочень высоких скоростях, 3000+ об/мин;
— сложность системы управления;
— падение мощности с ростом скорости вращения;
— отсутствие обратной связи;
— невысокая удельная мощность;
— низкая скорость вращения;
— шум.

Выбор шагового двигателя.
Шаговый двигатель можно использовать когда требуется контролируемое движение. Они могут использоваться в приложениях, где необходимо контролировать угол поворота, скорость, положение и синхронизацию. Из-за присущих выше преимуществ, шаговые двигатели нашли свое место в различных устройствах: принтеры, плоттеры, лазерные резаки, гравировальные станки, устройства захвата и так далее.
При выборе шагового двигателя для вашего устройства необходимо учитывать несколько факторов:
Как двигатель будет связан с нагрузкой?
Какие скорость и ускорения необходимо реализовать?
Какой крутящий момент необходим для перемещения исполнительного механизма?
Какая степень точности требуется при позиционировании?

Количество полюсов (однополюсный/биполярный)
Обычно шаговые двигатели имеют две фазы, но также существуют трех- и пятифазные двигатели. Биполярный двигатель с двумя фазами имеет одну обмотку/фазу, а однополярный двигатель имеет одну обмотку с центральным отводом на фазу. Иногда шаговый двигатель называют четырехфазным двигателем, хотя он имеет только две фазы. Двигатели с двумя отдельными обмотками на фазу могут приводиться в двухполярный или однополярный режим. Желательно, чтобы количество проводов на двигателе соответствовало количеству контактов на драйвере, чтобы не заниматься различными ухищрениями при подключения.

Номинальный ток
Обычно указывается максимальный ток, который подается одновременно на обе обмотки. Максимальный ток через одну обмотку (который действительно имеет значение при использовании микрошагов) указывается достаточно редко. При подаче номинального тока на одну обмотку происходит нагрев двигателя, из-за этого обычно ограничивают ток двигателя не более 85% от номинального тока. Для достижения максимального крутящего момента двигателя без перегрева, необходимо выбрать двигатель с номинальным током не более чем на 25% выше, чем рекомендуемый максимальный ток привода шагового двигателя.

Крутящий момент
Выходной крутящий момент и мощность шагового двигателя зависят от размера двигателя, теплоотвода, рабочего цикла, обмотки двигателя и типа используемого привода. Если шаговый двигатель работает без нагрузки во всем диапазоне частот, одна или несколько точек собственных колебаний резонанса могут быть обнаружены либо по звуку, либо по датчикам вибрации. Полезный крутящий момент от шагового двигателя может быть резко уменьшен за счет резонансов. Работы на резонансных частотах следует избегать. Внешнее демпфирование, дополнительная инерция или применение микрошагов используются для уменьшения эффекта резонанса.

Удерживающий момент
Это максимальный крутящий момент, который может обеспечить двигатель, когда обе обмотки находятся под напряжением при полном токе. Крутящий момент пропорционален току (за исключением очень малых токов), поэтому, например, если вы установите драйверы на 85% от номинального тока двигателя, то максимальный крутящий момент будет 85% * 0,707 = 60% от указанного удерживающего момента.
Крутящий момент возникает, когда угол ротора отличается от идеального угла, который соответствует току в его обмотках. Когда шаговый двигатель ускоряется, возникает крутящий момент для преодоления собственной инерции ротора и массы нагрузки, приводимой в движении. Чтобы создать этот крутящий момент, угол ротора должен отставать от идеального угла.
Известно, что использование микрошага снижает крутящий момент. На самом деле это означает, что угол запаздывания равен углу, соответствующему одному микрошагу (поскольку вы хотите, чтобы положение было с точностью до одного микрошага), более высокое значение микрошага предполагает уменьшение угла, а значит и уменьшение крутящего момента. Крутящий момент на единицу угла (что действительно имеет значение) не уменьшается при увеличении микрошага. Иными словами, отправка импульса на двигатель на один микрошаг 1/16 приводит к точно таким же фазовым токам (и, следовательно, к тем же силам), что и к отправке двух 1/32 микрошагов или четырех 1/64 микрошагов и так далее.

Читать еще:  Что такое вязкость масла для двигателя

Размер
Шаговые двигатели также классифицируются в соответствии с размерами корпуса, которые соответствуют размеру рамы двигателя. Например, шаговый двигатель NEMA11 имеет размер рамы приблизительно 1,1 дюйма (28 мм). Аналогично, шаговый двигатель NEMA23 имеет размер корпуса 2,3 дюйма (57 мм) и т. д. Однако длина корпуса может изменяться от двигателя к двигателю в рамках одной и той же классификации размеров, при этом крутящий момент двигателя с определенным размером рамы будет увеличиваться с увеличением длины корпуса.

— габарит рамы 20х20 мм;
— диапазон длин: 30-42 мм;
— крутящий момент: 0,18-0,3 кг*см.

— габарит рамы 28х28 мм;
— диапазон длин: 32-51 мм;
— крутящий момент: 0,43-0,9 кг*см.

— габарит рамы 35х35 мм;
— диапазон длин: 28 мм;
— крутящий момент: 1,0 кг*см.

— габарит рамы 39х39 мм;
— диапазон длин: 20-38 мм;
— крутящий момент: 0,65-2,0 кг*см.

— габарит рамы 42х42 мм;
— диапазон длин: 25-60 мм;
— крутящий момент: 1,7-6,5 кг*см.

— габарит рамы 56х56 мм;
— диапазон длин: 41-76 мм;
— крутящий момент: 2,88-18,9 кг*см.

— габарит рамы 86х86 мм;
— диапазон длин: 65-156мм;
— крутящий момент: 34-122 кг*см.

— габарит рамы 110х110 мм;
— диапазон длин: 99-201 мм;
— крутящий момент: 112-280 кг*см.

— габарит рамы 130х130 мм;
— диапазон длин: 165-270 мм;
— крутящий момент: 270-500 кг*см.

Угол шага.
Существует два распространенных угла шага: 0,9 и 1,8 градуса на полный шаг, что соответствует 400 и 200 шагам/оборот. Большинство устройств используют двигатели с шагом 1,8 град/шаг.
При заданной скорости вращения 0,9-градусный двигатель производит вдвое больше индуктивной обратной эдс, чем 1,8-градусный двигатель, из-за этого возможно будет необходимо использовать питание 24 В для достижения высоких скоростей с двигателями 0,9 градуса.
Для двигателей 0,9 градуса необходимо подавать шаговые импульсы драйвера с удвоенной скоростью по сравнению с двигателями 1,8 градуса. Если вы используете высокий микрошаг, тогда скорость может быть ограничена скоростью, с которой электроника может генерировать шаговые импульсы.

Разрешение и точность позиционирования.
На разрешение и точность позиционирования системы шагового двигателя влияют несколько факторов: угол шага (длина полного шага шагового двигателя), выбранный режим движения (полный шаг, полшага или микрошаг) и скорость передачи. Это означает, что есть несколько различных комбинаций, которые можно использовать для получения желаемого разрешения, из-за этого проблема разрешения обычно может быть решена после того, как были определены размер двигателя и тип привода.

Самоиндукция .
Индуктивность двигателя влияет на скорость, с которой драйвер шагового двигателя может приводить двигатель в действие до падения крутящего момента. Если мы временно игнорируем обратную эдс из-за вращения, а номинальное напряжение двигателя намного меньше, чем напряжение питания привода, то максимальные обороты в секунду перед падением крутящего момента составляют:

оборотов_в_секунду=(2*напржение_БП)/(шагов_на оборот*3,14* индуктивность* ток)

Если двигатель приводит ремень GT2 через шкив, это дает максимальную скорость в мм/с как:

Например:
двигатель 1,8 град/шаг ( т. е. 200 шагов/об) с индуктивностью 4 мГн работает при 1,5, А при напряжении питания 12 В, и привод ремня GT2 с 20-зубчатым шкивом начинает терять крутящий момент со скоростью около 250 мм/с.
На практике крутящий момент начинает падать раньше, чем это из-за обратной эдс, вызванной движением, потому что не учитывается сопротивление обмоток. Моторы с низкой индуктивностью также имеют низкую ЭДС из-за вращения. Для достижения высоких скоростей, необходимо выбирать двигатели с низкой индуктивностью и высоким напряжением питания.

Сопротивление и номинальное напряжение
Это сопротивление на фазу и падение напряжения на каждой фазе, когда двигатель неподвижен, и фаза передает свой номинальный ток (который является результатом сопротивления и номинального тока). Это важно когда номинальное напряжение значительно ниже напряжения питания для шаговых драйверов.

Обратный ЭДС из-за вращения
Когда шаговый двигатель вращается, то создается обратная эдс. При идеальном нулевом угле запаздывания на 90 градусов не в фазе с напряжением возбуждения, а в фазе с обратной ЭДС из-за индуктивности. Когда двигатель выдает максимальный крутящий момент и находится на грани пропуска шага, он находится в фазе с током.
Обратный ЭДС из-за поворота обычно не указывается в спецификации, но мы можем оценить его по следующей формуле:

Формула предполагает, что удерживающий момент указан для обеих фаз, находящихся под напряжением при номинальном токе. Если это указано только с одной фазой под напряжением, замените 1,414 на 2.
Пример: рассмотрим 200-шаговый двигатель, приводящий каретку через шкив с 20 зубцами и ремень GT2. Это 40-миллиметровое движение за оборот. Для достижения скорости 200 мм/сек нам нужно 5 об/сек. Если мы используем двигатель с удерживающим моментом 0,55 Нм, когда обе фазы работают при 1,68, А, пиковая обратная эдс из-за вращения составляет

1,414 * 3,142 * 0,55 * 5 / 1,68 = 7,3 В.

Как вбрать необходимое напряжение питания
Если заранее известна необходимая скорость движения для вашего устройства, можно предварительно определить, какое напряжение питания вам потребуется для драйверов двигателя.
Пример: определим необходимую скорость движения. Для этого примера будем использовать 200 мм/сек, передача шкив 20 зубьев GT2.
Исходя из необходимой скорости движения, определим максимальную скорость ремня.
Прикинем обратную ЭДС от индуктивности:

где N — число полных шагов на оборот (200 для двигателей с 1,8 градусами или 400 для двигателей с 0,9 градусами).
Возьмем для примера двигателя со следующими параметрами: 0,9 градуса с индуктивностью 4,1 мГн, и токе 1А. Таким образом, обратная эдс из-за индуктивности составляет:

Вычислим обратную ЭДС из-за вращения по приведенной ранее формуле.
Двигатели для примера имеют номинальный ток 1,68А и момент удержания 0,44 Нм, поэтому результат равен:

Предпочтительно, чтобы напряжение питания драйвера составляло по меньшей мере сумму этих двух обратных эдс, плюс еще несколько вольт запаса. При использовании двух двигателей последовательно требуемое напряжение удваивается.

Алгоритм выбора шагового двигателя
1. Определение компонента механизма привода .
Определите механизм и необходимые входные данные, вариант механизма, приблизительные размеры, расстояния перемещения и время позиционирования.
2. Рассчитайте необходимое разрешение.
Найдите разрешение, необходимое для двигателя. Исходя из требуемого разрешения, определите, будет ли использоваться только двигатель или мотор-редуктор . Тем не менее, благодаря использованию технологии микрошагов, достичь требуемого разрешения стало гораздо легче.
3. Определите схему работы
Определите схему работы, которая соответствует требуемым данных. Рассчитайте значения ускорения (замедления) и скорость рабочего импульса, чтобы рассчитать момент ускорения.
4. Рассчитайте необходимый крутящий момент.
Рассчитайте момент нагрузки и момент ускорения и найдите требуемый момент, требуемый двигателем.
5. Выберите двигатель.
Сделайте предварительный выбор двигателя на основе требуемого крутящего момента. Определите используемый двигатель по характеристикам скорости и крутящего момента.
6. Проверьте выбранный двигатель.
Подтвердите скорость ускорения / замедления и коэффициент инерции.

Общие рекомендации:
— если не планируется использовать внешние драйверы шаговых двигателей, выбирайте двигатели с номинальным током не менее 1,2, А и не более 2,0 А.
— рассчитывайте на рабочий ток шагового двигателя 50-85% от номинального.
— размер:
Nema 17- самый популярный размер, используемый в домашних проектах.
Nema 23 необходимо использовать если не хватает крутящего момента от длинных двигателей Nema 17.
— старайтесь не использовать двигатели с номинальным напряжением (или произведением номинального тока и фазового сопротивления)> 4 В или индуктивности> 4 мГн.
— выборйте двигатель с 0,9 град/шаг, если необходима дополнительная точность позиционирования, для стандартных решений используйте двигатели 1,8 град/шаг.
— при использовании 0,9 градусных шаговых двигателей или двигателей с высоким крутящим моментом, необходимо применение блоков питания с напряжением 24 В, чтобы поддерживать крутящий момент на более высоких скоростях.

Форум клана ЧПУшников

Меню навигации

  • Форум
  • Наш фирменный клуб. «Форум А»
  • «Мы в «Одноклассниках»»
  • «Мы в ВКонтакте»
  • «3d Сканирование»
  • Написать нам
  • Участники
  • Правила
  • Поиск
  • Регистрация
  • Войти

Пользовательские ссылки

  • Активные темы

Информация о пользователе

Вы здесь » Форум клана ЧПУшников » Станки с ЧПУ » Двигатель на 400 или 200 шагов

Двигатель на 400 или 200 шагов

Сообщений 1 страница 10 из 10

Поделиться128-02-2015 13:43:51

  • Автор: Sanek2323
  • Местный
  • Откуда: Приморье
  • Зарегистрирован : 20-01-2014
  • Приглашений: 0
  • Сообщений: 351
  • Уважение: [+2/-0]
  • Позитив: [+0/-0]
  • Пол: Мужской
  • Провел на форуме:
    6 дней 17 часов
  • Последний визит:
    04-08-2021 06:00:33

Здравствуйте, нашёл в сети такой двигатель 57HM76-3004 на 400 шагов и аналог 57HS76-3004 на 200 шагов.
Хочу поставить на зубчатую рейку двигатель на 400 шагов, на мой взгляд это поднимет точность без дробления шага. Как бы эти слабоваты но у китайцев наверно можно найти по мощнее (с индексами HM на 400 шагов)
Вопрос: крутящий момент не зависит от количества шагов на оборот? и насколько реально ставить такой двигатель, а то все утверждают что есть только на 200 шагов?
И ещё какой примерно мощности ставить двигатель на перемещение по зубчатой рейке портала весом примерно 15-20кг с передачей через ременной редуктор 1:6 (шаг передачи 8 мм на 1 оборот двигателя) сразу на 2 конца портала( 1 двигатель на портал)? Спасибо

  • Цитировать Сообщение 1
Читать еще:  Ауди 100 моновпрыск схема двигателя

Поделиться201-03-2015 08:54:41

  • Автор: andyshcher64
  • Гуру
  • Откуда: Серов
  • Зарегистрирован : 27-08-2013
  • Приглашений: 0
  • Сообщений: 1101
  • Уважение: [+174/-0]
  • Позитив: [+134/-1]
  • Пол: Мужской
  • Провел на форуме:
    26 дней 12 часов
  • Последний визит:
    09-11-2020 16:47:27

какой примерно мощности ставить двигатель на перемещение по зубчатой рейке портала весом примерно 15-20кг с передачей через ременной редуктор 1:6 (шаг передачи 8 мм на 1 оборот двигателя) сразу на 2 конца портала( 1 двигатель на портал)? Спасибо

рассчитывайте, чтоб усилие подачи портала было 100-150кг

Известно — масса перемещаемого груза.
Необходимо рассчитать силу, которую нужно приложить к грузу, чтобы его перемещать.
Чего не хватает в исходных данных? Правильно — ускорения.

Получим силу — пересчитаем в момент. Значит — у нас есть один параметр двигателя. (с учетом коэффициентов передачи!)

Чего еще не хватает? Маршевой скорости портала! Если будем знать, с какой скоростью нужно перемещать груз, то можно вычислить и мощность двигателя. (с учетом КПД!)
А вот и второй параметр двигателя.

Дополнительно, зная скорости и коэффициенты передачи, можно вычислить обороты. Это третий важный параметр движка.

Сделаем необходимый запас (фреза в работе тоже создает силу противодействия) — и вперед, выбирать движок.
А если не выберется — то менять механику.

Отредактировано andyshcher64 (01-03-2015 09:04:29)

  • Цитировать Сообщение 2

Поделиться301-03-2015 09:44:41

  • Автор: Sanek2323
  • Местный
  • Откуда: Приморье
  • Зарегистрирован : 20-01-2014
  • Приглашений: 0
  • Сообщений: 351
  • Уважение: [+2/-0]
  • Позитив: [+0/-0]
  • Пол: Мужской
  • Провел на форуме:
    6 дней 17 часов
  • Последний визит:
    04-08-2021 06:00:33

Слова вроде знакомые смысл ускользает, наверно поздно учиться. Я примерно пляшу от обратного, у меня на первом станке стабильно работают двигателя на 300 оборотах, выше пропускает шаги, возможно виноват драйвер( 4х осевой TB6560HQV3-T3 red).
Исходя из этого я считаю скорость перемещения 8х300=2400мм/мин. На практике мне хватит 2000мм/мин. Ускорение тоже не очень понятный параметр для меня, я в настройках 1 станка ставил 2/3 от скорости, то есть выходит 1300мм/сек.
Как определить КПД редуктора не знаю, ременная с 15 и 90 зубьями. я планировал двигатель на 28кг*см и такой драйвер, хотелось бы узнать по напряжению питания есть 24, 27 и 36В какое лучше использовать?

  • Цитировать Сообщение 3

Поделиться401-03-2015 09:58:29

  • Автор: andyshcher64
  • Гуру
  • Откуда: Серов
  • Зарегистрирован : 27-08-2013
  • Приглашений: 0
  • Сообщений: 1101
  • Уважение: [+174/-0]
  • Позитив: [+134/-1]
  • Пол: Мужской
  • Провел на форуме:
    26 дней 12 часов
  • Последний визит:
    09-11-2020 16:47:27

Скажем сразу — драйвер на ТВ6560 — суперначального типа. Сколько я с ним не бился, все равно он очень скромен по параметрам.

По методикам расчета — сходите на сайт darxton.ru
Там есть раздел «Статьи».
В них просто кладезь полезной информации.
Кстати — часть материалов написана членами этого форума.
Все подробно, все с картинками.
И про КПД передач там тоже есть.

Вообще — старайтесь все ж таки считать свое оборудование. Не надейтесь на гениальную подсказку.
Поначалу оно понятно, все собирали из того, что было. Но потом надо и переосмыслить и пересчитать.
Чтобы все последующие решения не были «блужданиями в темноте».

По методе выбора шагового двигателя — посмотрите тут на сайте посты Михаила Юрова. Моя ему уважуха!
Вам очень пригодится.

Двигатель 400 шагов на оборот

Началось мое станкостроение со случайной ссылки на немецкий станок за 2000 DM , который на мой взгляд выглядел по детски, однако мог выполнять довольно много занятных функций. В тот момент, меня заинтересовала возможность рисовать платы (это было еще до появления в моей жизни ЛУТ).

В результате протяженных поисков в сети было найдено несколько сайтов посвященных этой проблеме, однако русскоязычных среди них не было ни одного (это было примерно 3 года назад). В общем, в конце концов, я нашел два принтера CM 6337 (кстати их выпускал Орловский завод УВМ), откуда и выдрал униполярные шаговые двигатели ( Dynasyn 4 SHG -023 F 39 S , аналог ДШИ200-1-1). Параллельно с доставанием принтеров заказал и микросхемы ULN 2803 A (с буквой А – DIP корпус). Все собрал, запустил. Что получил, а получил дико греющиеся микросхемы ключей, и с трудом вращающийся двигатель. Так как по схеме из Голландии для увеличения тока ключи соединены попарно, то максимальный отдаваемый ток не превышал 1А, в то время как двигателю надо было 2А (кто ж знал что я найду такие прожорливые, как мне тогда показалось, двигатели J ). Кроме того, данные ключи построены по биполярной технологии, для тех кто не в курсе, падение напряжения может быть до 2В (если питание от 5, то фактически половина падает на сопротивлении перехода).

В принципе, для опытов с двигателями от 5” дисководов очень неплохой вариант, можно сделать например плоттер, однако что то более тяжелое чем карандаш (например дремель) ими вряд ли можно тягать.

Решил собрать свою собственную схему из дискретных элементов, благо в одном из принтеров оказалась нетронутой электроника, и я взял оттуда транзисторы КТ829 (Ток до 8А, напряжение до 100В)… Была собрана такая схема…

Рис.1 – Схема драйвера для 4х фазного униполярного двигателя.

Сейчас объясню принцип. При подаче логической “1” на один из выводов (на остальных “0”), например на D 0, транзистор открывается и ток течет через одну из катушек двигателя, при этом двигатель отрабатывает один шаг. Далее единица подается на следующий вывод D 1, а на D 0 единица сбрасывается в ноль. Двигатель отрабатывает сладующий шаг. Если подавать ток сразу в две соседние катушки то реализуется режим полушагов (для моих двигателей с углом поворота 1,8’ получается 400 шагов на оборот).

К общему выводу подсоединяются отводы от середины катушек двигателя (их два если проводов шесть). Очень хорошо теория шаговых двигателей описана тут — Шаговые двигатели. Управление шаговым двигателем., тут же приведена схема контроллера ШД на микроконтроллере AVR фирмы Atmel . Честно говоря, мне показалось похоже на забивание гвоздей часами, однако в ней реализована очень хорошая функция как ШИМ регулирование тока обмоток.

Поняв принцип, несложно написать программу управляющую двигателем через LPT порт. Зачем в этой схеме диоды, а за тем, что нагрузка у нас индуктивная, при возникновении ЭДС самоиндукции она разряжается через диод, при этом исключается пробой транзистора, а следовательно и вывод его из строя. Еще одна деталь схемы – регистр RG (я использовал 555ИР33), используется как шинный формирователь, поскольку ток отдаваемый, например LPT портом мал – можно его элементарно спалить, а следовательно, есть возможность спалить весь компьютер.

Схема примитивна, и собрать такое можно минут за 15-20, если есть все детали. Однако у такого принципа управления есть недостаток – так как формирование задержек при задании скорости вращения задается программой относительно внутренних часов компьютера то работать в многозадачной системе ( Win ) это все не будет! Будут просто теряться шаги (может быть в Windows и есть таймер, но я не в курсе). Второй недостаток – это нестабилизированный ток обмоток, максимальную мощность из двигателя не выжать. Однако по простоте и надежности этот способ меня устраивает, тем более что для того, что бы не рисковать своим Атлоном 2ГГц, я собрал из барахла 486 тарантас, и кроме ДОСа там, в принципе мало, что можно поставить нормальное.

Описанная выше схема работала и в принципе неплоха, но я решил, что можно несколько переделать схему. Применить MOSFET J ). транзисторы (полевые), выигрыш в том, что можно коммутировать огромные токи (до 75 – 100А), при солидных для шаговых двигателей напряжениях (до 30В), и при этом детали схемы практически не греются, ну если не считать предельных значений (хотел бы я видеть тот шаговый двигатель который съест ток 100А

Как всегда в России возник вопрос, где взять детали. У меня возникла идея – извлечь транзисторы из горелых материнских плат, благо, например Атлоны кушают порядочно и транзисторы там стоят огого. Дал объявление в ФИДО, и получил предложение забрать 3 мат. платы за 100 рублей. Прикинув что в магазине за эти деньги можно от силы купить 3 транзистора, забрал, расковырял и о чудо, хотя они все и были дохлыми, ни один транзистор в цепи питания процессора не пострадал. Так я получил пару десятков полевых транзисторов за сто рублей. Схема, которая получилась в результате, представлена ниже.

Читать еще:  Холостые обороты двигателя aveo

Рис. 2 – Тоже на полевых транзисторах

Отличий в этой схеме немного, в частности была применена микросхема нормального буфера 75 LS 245 (выпаяна над газовой плитой из 286 материнской платы J ). Диоды можно поставить любые, главное, что бы их максимальное напряжение не было меньше максимального напряжения питания, а предельный ток не меньше тока питания одной фазы. Я поставил диоды КД213 A , это 10А и 200В. Возможно это излишне для моих 2х амперных двигателей, однако покупать детали не было смысла, да и запас по току думается лишним не будет. Резисторы служат для ограничения тока перезарядки емкости затворов.

Ниже приводится печатная плата контроллера построенного по такой схеме.

Рис. 3 – Печатная плата.

Печатная плата разведена для поверхностного монтажа на одностороннем текстолите (лень мне что то дырочки сверлить сталоJ). Микросхемы в DIP корпусах паяются с подогнутыми ножками, резисторы SMD с тех же материнок. Файл с разводкой в Sprint — Layout 4.0 прилагается. Можно было бы запаять на плату и разъемы, но лень как говорится — двигатель прогресса, да и при отладке железа удобнее было запаять провода подлиннее.

Еще необходимо отметить, что схема снабжена тремя концевиками, на плате справа снизу шесть контактов вертикально, радом с ними посадочные места под три резистора, каждый соединяет один вывод выключателей с +5В. Схема концевиков :

Рис. 4 – Схема концевиков.

Вот так это выглядело у меня в процессе наладки системы:

В результате на представленный контроллер я потратил не более 150 рублей: 100 рублей за материнские платы (при желании можно вообще бесплатно достать) + кусок текстолита, припой и банка хлорного железа в сумме тянут на

50 рублей, причем хлорного железа останется потом еще много. Думаю считать провода и разъемы смысла не имеет. (Кстати разъем питания отпилен от старого винчестера.)

Так как практически все детали сделаны в домашних условиях, с помощью дрели, напильника, ножовки, рук и такой то матери, то зазоры конечно гигантские, однако модифицировать отдельные узлы в процессе эксплуатации и опытов проще, чем изначально делать все точно.

Если бы на Орловских заводах проточить отдельные детали не стоило бы так дорого, то мне бы конечно проще было бы вычертить все детали в CAD ’е, со всеми квалитетами и шероховатостями и отдать на съедение рабочим. Однако знакомых токарей нет… Да и руками как то знаете ли интереснее…

P . S . Хочу высказать свое мнение по поводу негативного отношения автора сайта к советским и Российским двигателям. Советские двигатели ДШИ, вполне себе даже ничего, даже маломощный ДШИ200-1-1. Так что если вам удалось откопать за “пиво” такое добро не спешите выкидывать их, они еще поработают… проверено… Но если же покупать, и разность в стоимости не велика, лучше все таки брать иностранные, поскольку точность у них конечно будет выше.

P . P . S . Е: Если что то я написал не правильно пишите, исправим, но … РАБОТАЕТ…

Шаговый двигатель

Шаговые электродвигатели (ШД) используются там, где нужно позиционирование повышенной точности.

Что такое шаговый двигатель? Это синхронный двигатель без щеток, имеющий несколько обмоток. Для фиксации ротора в определенной позиции ток подается в одну из обмоток статора. По поступлении тока в другую обмотку ротор меняет позицию. Это и есть «шаг».

Типы ШД и их устройство

  1. С переменным магнитным сопротивлением. На статичной части таких ШД есть несколько полюсов. Ротор – зубчатой формы из мягкого материала, ненамагниченный. Если, к примеру, статор 6-полюсный, а ротор из 4 зубцов, то независимых обмоток на двух противоположных статорных полюсах будет 3. Шаг мотора будет равен 30 ° .
  2. С постоянными магнитами в роторе. Прямолинейные полюсы параллельны оси двигателя. Поскольку магнитный поток мощнее, крутящий момент на порядок выше, чем в ШД первого типа. Шаг такого мотора – от 7,5 до 15°.Может быть от 24 до 48 шагов на оборот.
  3. Гибридные ШД (ГШД). Установка зубцов в направлении оси сокращает величину шага. Крутящий момент и скорость возрастают. Обычно бывает от 100 до 400 шагов за оборот при угле шага 0,9-3,6°. Наиболее распространен биполярный ШД nema. Только в гибридных ШД применяется режим микрошага. Управление обмотками независимое. Плавность вращения подвижной части повышена. Возможны 51200 шагов за оборот. Точность позиционирования оптимальна. Обеспечивается более низкая магнитная проводимость зазоров относительно удельной проводимости зубцов.

ШД по типу обмоток подразделяются на:

  • Биполярные с одной обмоткой для каждой фазы. Переплюсовка драйвером изменяет направление магнитного поля.
  • Униполярные. В каждой фазе одна обмотка, но из середины каждой обмотки имеется отвод. Направление поля меняется за счет переключения используемой половины обмотки. Драйвер имеет только 4 ключа.

Характеристики ШД

  1. Крутящий момент. Его измеряют в кг-сила-см. Чем выше показатель зависимости вращательного момента от частоты вращения, тем быстрее ШД набирает обороты после включения.
  2. Удерживающий момент или сила блокирования ротора статором при включенном, но не запущенном моторе. Его измеряют в унциях-на-дюйм.
  3. Тормозящий или стопорный момент, т.е. сила, которая удерживает ротор от вращения без подачи тока. В ГШД эта величина в 10 раз меньше величины силы удерживания ротора от вращения при полной подаче тока. Измеряется в унциях-на-дюйм.
  4. Номинальное напряжение, зависящее от индуктивности обмоток. Указывается в вольтах. По нему определяют оптимальное напряжение для подачи в мотор. Наилучшее напряжение превышает номинальное. Превышение силы подаваемого тока ведет к перегреву и поломке двигателя. При недостаточном напряжении он не запустится. Оптимальную силу тока определяют по формуле U = 32 x√ L. L – индуктивность обмотки, а U – искомое значение.
  5. Диэлектрические испытания. По максимальному напряжению, которое выдерживает обмотка в течение определенного времени, определяют сопротивление мотора перегрузкам.
  6. Момент инерции ротора – это скорость разгона ШД, которую измеряют в грамм-квадратных см.
  7. Число полных шагов за оборот. Чем оно больше, тем мощнее и быстрее мотор.
  8. Длина корпуса без учета вала и общая масса или вес изделия. По габаритам и массе определяют, когда нужен компактный двигатель, а когда – крупнее и мощнее.

К примеру, в ШД PL57H41 PL57 – ширина-высота (диаметр) по квадратному фланцу 57 мм, H41 – длина двигателя без вала, равная 41 мм. Диаметр двигателя влияет на все его моменты больше, чем длина.

Инкодеры, драйверы и подключение

Специальные драйверы подключают к компьютерному LTP-порту и посредством их управляют ШД. Драйвер – это практически блок управления ШД. В шаговых двигателях для ЧПУ к драйверу присоединяют 4 вывода ШД и управляющие провода с контроллера ЧПУ, и плюс и минус с блока питания. Поступая в драйвер, сигналы контроллера управляют переключением ключей силовой схемы питающего напряжения. Через эти ключи питающее напряжение идет на двигатель.

Максимальный выдаваемый на выводы для обмоток мотора ток нужного напряжения – основной критерий подбора драйвера. Идущий с драйвера ток не должен быть ниже тока, потребляемого мотором. Параметры выходного напряжения выставляются переключателями на драйвере.

В двигателе может быть от 4 до 6 проводов, и от их количества зависит порядок подключения ШД. Биполярные механизмы сочетаются только с 4-проводными двигателями.

На каждые 2 обмотки приходится 2 провода. Самые мощные 6-проводные моторы могут подключаться и к биполярным, и к униполярным устройствам, и в них на каждую обмотку приходится средний провод или центр-кран и 2 провода. В униполярных моторах на каждую обмотку приходятся 3 провода. Два из них подсоединяют к транзисторам, а центр-кран – к источнику питания.

В 5-проводных ШД центральные провода вместе с остальными входят в общий кабель. Предпочтительно найти средний провод и соединить его с другими проводниками.

Датчики, подающие сигналы программному обеспечению, называют энкодерами и часто применяют с ШД. Энкодер нужен, когда налицо нелинейная зависимость от количества шагов.

Области использования, достоинства и недостатки

Шаговые двигатели для ЧПУ широко применяются в координатных столах и системах автоматизации. Панелям управления, программирования и станкам с ЧПУ не обойтись без ШД.

ШД – достойная альтернатива серводвигателю, поскольку, в отличие от него:

  1. Хорошо работает при весьма разнообразных нагрузках.
  2. Имеет постоянный угол поворота и стандартизированные габариты.
  3. Имеет низкую стоимость.
  4. Прост в монтаже и эксплуатации, долговечен и надежен.
  5. Пропуская шаги, не сгорает при крайне высоких оборотах.

Тем не менее, ШД уступает серводвигателю в том, что:

  1. У него мал КПД и велико энергопотребление.
  2. Увеличение частоты оборотов резко снижает крутящий момент.
  3. Мощность слишком мала для таких габаритов и веса.
  4. Велик нагрев двигателя при работе.
  5. Мотор слишком шумит на высокой и средней частотах.
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector