Arskama.ru

Автомобильный журнал
8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатели для работы на одной обмотке

Двигатели для работы на одной обмотке

В основу работы любых электродвигателей положен принцип электромагнитной индукции. Электродвигатель состоит из неподвижной части — статора (для асинхронных и синхронных движков переменного тока) либо индуктора (для движков постоянного тока) и подвижной части — ротора (для асинхронных и синхронных движков переменного тока) либо якоря (для движков постоянного тока). В роли индуктора на маломощных двигателях постоянного тока нередко используются постоянные магниты.

Все двигатели, грубо говоря можно поделить на два вида:
двигатели постоянного тока
двигатели переменного тока (асинхронные и синхронные)

Двигатели постоянного тока

По неким мнениям данный двигатель возможно еще назвать синхронной машиной постоянного тока с самосинхронизацией. Простой движок, являющийся машиной постоянного тока, состоит из постоянного магнита на индукторе (статоре), 1-го электромагнита с очевидно выраженными полюсами на якоре (двухзубцового якоря с явно выраженными полюсами и с одной обмоткой), щёточноколлекторного узла с 2-мя пластинами (ламелями) и 2-мя щётками.
Простой двигатель имеет 2 положения ротора (2 «мёртвые точки»), из которых неосуществим самозапуск, и неравномерный крутящий момент. В первом приближении магнитное поле полюсов статора равномерное (однородное).

Данные двигатели с наличием щёточно-коллекторного узла бывают:

Колекторные — электрическое устройство, в котором датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.

Бесколекторные — замкнутая электромеханическая система, состоящая из синхронного устройства с синусоидальным распределением магнитного поля в зазоре, датчика положения ротора, преобразователя координат и усилителя мощности. Более дорогой вариант в сравнение с колекторными двигателями.

Двигатели переменного тока

По типу работы данные двигатели делятся на синхронные и асинхронные двигатели. Принципное отличие заключается в том, что в синхронных машинах 1-ая гармоника магнитодвижущей силы статора перемещается со скоростью вращения ротора (по этому сам ротор крутится со скоростью вращения магнитного поля в статоре), а у асинхронных — есть и остается разница меж скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле крутится быстрее ротора).

Синхронный — двигатель переменного тока, ротор которого крутится синхронно с магнитным полем питающего напряжения. Эти движки традиционно применяются при огромных мощностях (от сотен киловатт и выше).
Есть синхронные двигатели с дискретным угловым движением ротора — шаговые двигатели. У них данное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение исполняется путём снятия напряжения питания с одних обмоток и передачи его на другие обмотки двигателя.
Ещё один вид синхронных движков — вентильный реактивный эл-двигатель, питание обмоток которого складывается с помощью полупроводниковых элементов.

Асинхронный — двигатель переменного тока, в котором частота вращения ротора различается от частоты крутящего магнитного поля, творимого питающим напряжением, второе название асинхронных машин — индукционные обосновано тем, что ток в обмотке ротора индуцируется вертящимся полем статора. Асинхронные машины сейчас оформляют огромную часть электрических машин. В главном они используются в виде электродвигателей и считаются ключевыми преобразователями электрической энергии в механическую, причём в основном используются асинхронные движки с короткозамкнутым ротором

По количеству фаз двигатели бывают:

  • однофазные
  • двухфазные
  • трехфазные

Самые популярные и шыроковостребованые двигатели которые применяются в производстве и бытовом хозяйстве:

Однофазный асинхронный двигатель с короткозамкнутым ротором

Однофазовый асинхронный движок имеет на статоре только 1 рабочую обмотку, на которую в ходе работы мотора подается переменный ток. Хотя для запуска мотора на его статоре есть и вспомогательная обмотка, которая краткосрочно подключается к сети через конденсатор либо индуктивность, или замыкается накоротко пусковыми контактами рубильника. Это нужно для создания исходного сдвига фаз, чтоб ротор начал крутиться, по другому пульсирующее магнитное поле статора не здвинуло б ротор с места.

Ротор такового мотора, как и любого иного асинхронного мотора с короткозамкнутым ротором, являет из себя цилиндрический сердечник с залитыми алюминием пазами, с сразу отлитыми вентиляционными лопастями.
Таковой ротор именуется короткозамкнутым ротором. Однофазовые движки используются в маломощных устройствах, в том числе комнатные вентиляторы либо маленькие насосы.

Двухфазный асинхронный двигатель с короткозамкнутым ротором

Двухфазные асинхронные движки более эффективны при работе от однофазовой сети переменного тока. Они содержат на статоре две рабочие обмотки, находящиеся перпендикулярно, при этом одна из обмоток подключается к сети переменного тока напрямую, а вторая – через фазосдвигающий конденсатор, так выходит крутящееся магнитное поле, а вот без конденсатора ротор бы не двинулся с места.

Данные двигатели помимо прочего имеют короткозамкнутый ротор, а их использование еще обширнее, нежели у однофазовых. Тут уже и стиральные машинки, и разные станки. Двухфазные движки для питания от однофазовых сетей называют конденсаторными двигателями, потому что фазосдвигающий конденсатор считается часто обязательной их частью.

Трехфазный асинхронный двигатель с короткозамкнутым ротором

Трехфазный асинхронный двигатель имеет на статоре три рабочие обмотки, сдвинутые сравнительно друг друга так, что при подключении в трехфазную сеть, их магнитные поля получаются смещенными в пространстве сравнительно друг дружку на 120 градусов. При включении трехфазного мотора к трехфазной сети переменного тока, появляется крутящееся магнитное поле, приводящее в перемещение короткозамкнутый ротор.

Обмотки статора трехфазного мотора возможно соединить по схеме «звезда» либо «треугольник», при этом для питания мотора по схеме «звезда» потребуется напряжение выше, чем для схемы «треугольник», и на движке, потому, указываются 2 напряжения, к примеру: 127/220 либо 220/380. Трехфазные движки незаменимы для приведения в действие разных станков, лебедок, циркулярных пил, подъемных кранов, и т.п.

Трехфазный асинхронный двигатель с фазным ротором

Трехфазный асинхронный движок с фазным ротором имеет статор подобный описанным выше типам движков, шихтованный магнитопровод с 3-мя уложенными в его пазы обмотками, но в фазный ротор не залиты дюралевые стержни, а уложена уже настоящая трехфазная обмотка, в соединении «звезда». Концы звезды обмотки фазного ротора выведены на три контактных кольца, насаженных на вал ротора, и электрически отделенных от него.

Посредством щеток, на кольца помимо прочего подается трехфазное переменное напряжение, и включение может быть осуществлено как впрямую, так и через реостаты. Непременно, движки с фазным ротором стоят подороже, хотя их пусковой момент под нагрузкой значительно повыше, нежели у типов движков с короткозамкнутым ротором. Именно в следствие завышенной силы и огромного пускового момента, данный вид движков отыскал использование в приводах лифтов и подъемных кранов, другими словами там, где прибор запускается под нагрузкой а не в холостую, как у двигателей с короткозамкнутым ротором.

Трёхфазный двигатель

Трёхфазный двигатель — электродвигатель, конструктивно предназначенный для питания от трехфазной сети переменного тока.

Представляет собой машину переменного тока, состоящую из статора с тремя обмотками, магнитные поля которых сдвинуты в пространстве на 120° и при подаче трехфазного напряжения образуют вращающееся магнитное поле в магнитной цепи машины, и из ротора — различной конструкции — вращающегося строго со скоростью поля статора (синхронный двигатель) или несколько медленнее его (асинхронный двигатель).

Наибольшее распространение в технике и промышленности получил асинхронный трёхфазный электродвигатель с короткозамкнутой обмоткой ротора, также называемой «беличье колесо». Под выражением «трехфазный двигатель» обычно подразумевается именно этот тип двигателя, и именно он описывается далее в статье.

Принцип работы двух и многофазных двигателей был разработан Николой Теслой и запатентован. Доливо-Добровольский усовершенствовал конструкцию электродвигателя и предложил использовать три фазы вместо двух, используемых Н. Теслой. Усовершенствование основано на том, что сумма двух синусоид равной частоты различающихся по фазе дают в сумме синусоиду, это дает возможность использовать три провода (в четвёртом «нулевом» проводе ток близок к нулю) при трехфазной системе против четырёх необходимых проводов при двухфазной системе токов. Некоторое время усовершенствование Доливо-Добровольского было ограниченно патентом Теслы на мультифазные двигатели, который к тому времени успел его продать Д. Вестингаузу.

Читать еще:  Чем промыть двигатель при капиталке

Содержание

  • 1 Режимы работы
  • 2 Режимы работы (подробно)
  • 3 Способы соединения обмоток
  • 4 Работа в однофазной сети
  • 5 Работа в случае пропадания одной фазы
  • 6 Электрозащита
  • 7 См. также
  • 8 Ссылки

Режимы работы [ править ]

Асинхронный двигатель, согласно принципу обратимости электрических машин, может работать как в двигательном, так и в генераторном режимах. Для работы асинхронного двигателя в любом режиме требуется источник реактивной мощности.

В двигательном режиме при подключении двигателя к трехфазной сети переменного тока в обмотке статора образуется вращающееся магнитное поле, под действием которого в короткозамкнутой обмотке ротора наводятся токи, образующие электромагнитный момент вращения, стремящийся провернуть ротор вокруг его оси. Ротор преодолевает момент нагрузки на валу и начинает вращаться, достигая подсинхронной скорости (она же и будет номинальной с учётом момента нагрузки на валу двигателя).

В генераторном режиме при наличии источника реактивной мощности, создающего поток возбуждения, асинхронная машина способна генерировать активную мощность. Источником реактивной мощности может служить конденсатор.

Режимы работы (подробно) [ править ]

Пуск — вектор результирующего магнитного поля статора равномерно вращается с частотой питающей сети, делённой на количество отдельных обмоток каждой фазы (в простейшем случае — по одной). Таким образом, через любое сечение ротора проходит магнитный поток, изменяющийся во времени по синусу. Изменение магнитного потока в роторе порождает в его обмотках ЭДС. Так как обмотки замкнуты накоротко и сделаны из проводника большого сечения («беличье колесо»), ток в обмотках ротора достигает значительных величин и, в свою очередь, создаёт магнитное поле. Так как ЭДС в обмотках пропорциональна скорости изменения магнитного потока (то есть — производной по времени от синусной зависимости — косинусу), наведённая ЭДС беличьего колеса и соответственно результирующее магнитное поле (вектор) ротора на 90 градусов «опережает» вектора статора (если смотреть на направления векторов и направление их вращения). Взаимодействие магнитных полей создаёт вращающий момент ротора.

Электроэнергия, подводимая к электродвигателю в режиме пуска и полного торможения, тратится на перемагничивание ротора и статора, а также на активное сопротивление току в обмотке ротора. (Эквивалентно работе понижающего трансформатора с коротким замыканием вторичной обмотки).

Холостой ход — после начала движения, с увеличением оборотов ротора, его скорость относительно вектора магнитного поля статора будет уменьшаться. Соответственно будет уменьшаться и скорость изменения магнитного потока через (любое) сечение ротора, соответственно уменьшится наведённая ЭДС и результирующий магнитный момент ротора. В отсутствие сил сопротивления (идеальный холостой ход) угловая скорость ротора будет равна угловой скорости магнитного поля статора, соответственно разница скоростей, наведённая ЭДС и результирующее магнитное поле ротора будут равны нулю.

Электроэнергия, подводимая к электродвигателю в режиме холостого хода, не потребляется (индуктивная нагрузка). Эквивалентно работе понижающего трансформатора на холостом ходу (или короткозамкнутыми вторичными обмотками, расположенными вдоль сердечника)

Двигательный режим — среднее между полным торможением и холостым ходом. Полезная нагрузка и механические потери не позволяют ротору достичь скорости магнитного поля статора, возникающее их относительное скольжение наводит некоторую ЭДС и соответствующее магнитное поле ротора, которое своим взаимодействием с полем статора компенсирует тормозной момент на валу.

Механическая характеристика асинхронного двигателя является «жёсткой», то есть при незначительном уменьшении оборотов крутящий момент двигателя возрастает очень сильно — «стремится поддерживать номинальные обороты». Это хорошее свойство для приводов, требующих поддержания заданной скорости независимо от нагрузки (транспортёры, погрузчики, подъёмники, вентиляторы).

Электроэнергия, подводимая к электродвигателю в двигательном режиме, потребляется (частью, обозначаемой «косинус фи») на совершение полезной работы и нагрев двигателя, остальная часть возвращается в сеть как индуктивная нагрузка. «Косинус фи» зависит от нагрузки на двигатель, на холостом ходу он близок к нулю. В характеристике двигателя указывается «косинус фи» для номинальной нагрузки.

Генераторный режим возникает при принудительном увеличении оборотов выше «идеального холостого хода». При наличии источника реактивной мощности, создающего поток возбуждения, магнитное поле ротора наводит ЭДС в обмотках статора и двигатель превращается в источник активной мощности (электрической).

Способы соединения обмоток [ править ]

  • Звезда — концы всех обмоток соединяются вместе и соединяются с «нулем» подводимого напряжения. Начала обмоток подключаются к «фазам» трёхфазной сети. На схеме изображения обмоток напоминают звезду (катушки по радиусу направлены из центра).
  • Треугольник — начало одной обмотки соединяется с концом следующей — по кругу. Места соединения обмоток подключаются к «фазам» трёхфазного напряжения. «Нулевого» выхода такая схема не имеет. На схеме обмотки соединены в треугольник.

Схемы не имеют особых преимуществ друг перед другом, однако «звезда» требует большего линейного напряжения, чем «треугольник» (для работы в номинальном режиме). Поэтому в характеристике трёхфазного двигателя указывают два номинальных напряжения через дробь (как правило, это 220/380 или 127/220 вольт).

Работающие по схеме «треугольник» двигатели можно соединять по схеме «звезда» на время пуска (для снижения пускового тока) посредством специальных пусковых реле.

Начала и концы обмоток выведены на колодку «два на три» вывода так, что:

  • для соединения в «звезду» требуется соединить весь один ряд из трёх выводов — это будет центр («ноль»), остальные выводы подключаются к фазам.
  • для соединения в «треугольник» требуется соединить попарно все три ряда по два провода и подключить их к фазам.

Для смены направления вращения трехфазного электродвигателя необходимо поменять местами любые две фазы из трех в месте подключения питания к двигателю.

Работа в однофазной сети [ править ]

Может работать в однофазной сети с потерей мощности (не нагруженный на номинальную мощность). При этом для запуска необходим механический сдвиг ротора, либо фазосдвигающая цепь, которая обычно строится из ёмкости, индуктивности или трансформатора.

При однофазном запуске на одну из обмоток подаётся напряжение (ток) через ёмкость или индуктивность, которая сдвигает фазу тока (без учёта потерь):

  • вперёд на 90° — при включении в цепь ёмкости,
  • назад на 90° — при включении в цепь индуктивности,

После запуска напряжение с фазосдвигающей обмотки снимать нельзя. Снятие с фазосдвигающей обмотки напряжения эквивалентно работе трёхфазного двигателя с обрывом одной из фаз, и при даже незначительном возрастании тормозного момента на валу двигатель остановится и сгорит.

В некоторых случаях, при питании от однофазной сети, запуск осуществляется вручную проворотом ротора. После проворота ротора двигатель работает самостоятельно.

Трёхфазный двигатель приспособлен к трёхфазной сети, а к однофазной сети лучше подходит двухфазный двигатель со сдвигом фазы во второй обмотке либо через конденсатор (конденсаторные двигатели), либо через индуктивность.

Работа в случае пропадания одной фазы [ править ]

Запуск возможен только в случае соединения обмоток «звездой» с подключением нулевого провода (что не является обязательным для работы). Если нагрузка не позволит двигателю запуститься и развить номинальные обороты, то из-за увеличения тока в обмотках и уменьшения охлаждения он выйдет из строя через несколько минут (перегрев, пробой изоляции и короткое замыкание).

Продолжение работы будет при любом типе соединения обмоток, но так как при этом перестаёт поступать примерно половина энергии, то продолжительная работа возможна только при нагрузке двигателя значительно менее чем на 50 %. При большей (номинальной) нагрузке увеличение тока в работающих фазах неминуемо вызовет перегрев обмоток с дальнейшим пробоем изоляции и коротким замыканием. Это одна из частых причин преждевременного выхода из строя асинхронных двигателей.

Читать еще:  Все о тюнинге двигателя ваз 21083

Электрозащита [ править ]

Для защиты двигателей от пропадания и перекоса (разницы напряжений) фаз питающего напряжения применяют реле контроля фаз, которые в этих случаях полностью отключают питание (с автоматическим или ручным дальнейшим включением). Возможна установка одного реле на группу двигателей.

Более грубой и универсальной защитой, обязательной по правилам эксплуатации и обычно достаточной при правильно подобранных параметрах, является установка трёхфазных автоматических выключателей (по одному на двигатель), которые отключают питание в случае длительного (до нескольких минут) превышения номинального тока по любой из фаз, что является следствием перегрузки двигателя, перекоса или обрыва фаз.

Многоскоростные однофазные конденсаторные электродвигатели

Однофазные асинхронные двигатели выпускаются для работы без регулирования частоты вращения. В тех же случаях, когда необходимо изменять частоту вращения, чаще всего используются двигатели с изменением числа пар полюсов.

В целом, для изменения скорости однофазного двигателя можно применить 3 различных способа. Один состоит в том, что в статоре помещаются 2 полных комплекта обмоток, каждый для различного числа полюсов. Тогда согласно уравнению 2 различные скорости получаются при одной и той же частоте сети. Другие 2 способа состоят в изменении напряжения на зажимах двигателя или в изменении числа витков главной обмотки путем ответвлений от нее.

Способ, основанный на использовании 2 комплектов обмоток, применяется главным образом для двигателей с расщепленной фазой и двигателей с конденсаторным пуском. Способы, основанные на изменении напряжения или использовании обмотки с ответвлениями, применяются главным образом для конденсаторных двигателей с постоянно включенной емкостью.

В настоящее время для привода различных механизмов широкое распространение получили многоскоростные асинхронные конденсаторные электродвигатели (электродвигатели с одной постоянно включенной емкостью). Такой тип электродвигателей не требует дополнительных элементов, необходимых для включения в сеть, а также позволяет достаточно просто менять направление вращения вала. Для этого достаточно поменять в схеме местами концы главной или вспомогательной обмоток.

В конденсаторных двигателях применяются основные схемы включения обмоток, показанные на рис. 1. Наибольшее распространение получила так называемая параллельная схема соединения обмоток (рис. 1, а). Как видно из рисунка, обмотки статора включаются в сеть питания параллельно. Фазосдвигающая емкость С включается последовательно со вспомогательной обмоткой.

Величина емкости конденсатора выбирается из условий обеспечения требуемых характеристик электродвигателей. В основном в конденсаторных двигателях емкость выбирается такой, чтобы сдвиг фаз токов в главной и во вспомогательной обмотках в номинальном режиме был близок к 90°. В этом случае двигатель имеет наилучшие энергетические показатели в рабочей точке, но ухудшаются пусковые.

Рис. 1. Схемы соединения обмоток асинхронных двигателей

Изменение частоты вращения конденсаторных двигателей осуществляется, чаще всего за счет изменения числа пар полюсов. Для этого на статоре укладывается либо два комплекта обмоток с различным числом полюсов, либо один комплект, с переключением числа полюсов.

В тех же случаях, когда не требуется значительного диапазона регулирования частоты вращения, используется наиболее простой способ — изменение числа витков рабочей обмотки. В этом случае при неизменности напряжения сети изменяется величина магнитного потока электродвигателя и, следовательно, электромагнитный момент и частота врашения ротора.

Двухскоростные двигатели при обмотках с ответвлениями

Ранее было указано, что скорость однофазного двигателя может быть изменена или путем изменения напряжения на его зажимах, или путем изменения числа витков его вторичнной обмотки. Первый способ делает необходимым примение автотрансформатора и используется главным образом для конденсаторных двигателей с постоянно включенной емкостью, имеющих на валу вентилятор.

При автотрансформаторе можно получить и больше, чем 2 скорости. Изменение числа витков главной обмотки получается путем ответвлений от нее. Статор тогда имеет 3 обмотки: главную, промежуточную и вспомогательную. Первые 2 обмотки имеют одну и ту же магнитную ось, т. е. промежуточная обмотка наматывается в тех же пазах, что и главная обмотка (над ней).

Практическая реализация этого способа осуществляется следующим образом. В пазах статоре помимо проводников рабочей (РО) и конденсаторной обмоток (КО), укладываются проводники дополнительной обмотки (ДО). В результате комбинации различных схем включения обмоток (рис. 2) удастся получить при неизменной величине питающего напряжения различные механические характеристики электродвигателя.

Рис. 2. Схемы соединений статорных обмоток многоскоростного конденсаторного двигателя при минимальной (а), повышенной (б) и максимальной частоте вращения (в)

В процессе регулирования частоты вращения в многоскоростных конденсаторных электродвигателях возникают переходные процессы, связанные с изменением схем включения обмоток статора. Эти процессы протекают, как правило, при незатухающих магнитных полях и могут вызнать значительные броски токов и перенапряжения в обмотках двигателя и фазосмещающем конденсаторе.

Двухскоростные двигатели с 2 комплектами обмоток

Размещение 2 комплектов обмоток, т. е. 2 главных обмоток и 2 вспомогательных обмоток, требует значительного увеличения размеров. Для того чтобы уменьшить эти размеры, часто применяется соединение для вспомогательной или низкоскоростной обмотки, при котором число катушечных групп получается меньше числа полюсов.

На рис. 3 показана схема соединений обмоток для 4 и 6 полюсов (примерно 1435 а 950 об/мин при 50 гц). Внешняя обмотка — 4-полюсная главная обмотка. Следующая — 6-полюсная главная обмотка. Третья — 4-полюсная вспомогательная обмотка, имеющая только 2 катушечные группы. Внутренняя обмотка — 6-полюсная вспомогательная обмотка, имеющая также только 2 катушечные группы.

Рис. 3. Схема соединений для 2-скоростного (4 и 6 полюсов) двигателя.

На рис. 3 обе вспомогательные обмотки имеют уменьшенное число катушечных групп. Можно также и главную обмотку сделать такого же типа.

Рассмотрим 2 примера. Статорная обмотка для 4 и 8 полюсов может иметь нормальную 4-полюсную главную обмотку и 3 другие обмотки с уменьшенным числом катушечных групп, т. е. 8-полюсную главную обмотку с 4 катушечными группами, 4-полюсную вспомогательную обмотку с 2 катушечными группами и 8-полюсную вспомогательную обмотку с 4 катушечными группами.

Статорная обмотка для 6 и 8 полюсов может иметь нормальную 6-полюсную главную обмотку, две 8-полюсные обмотки с уменьшенным числом групп, т. е. 8-полюсную главную обмотку и 8-полюсную вспомогательную обмотку с 4 полюсными группами каждая, а 6-полюсную вспомогательную обмотку с 2 катушечными группами. 6-полюсная вспомогательная обмотка может быть также выполнена в виде нормальной обмотки, т. е. с 6 катушечными группами.

На рис. 4 показана схема 2-скоростного двигателя с расщепленной фазой с 2 обмотками и здесь же показано присоединение его к сети. Соединения выполнены таким образом, что требуется только 1 пусковой выключатель. Этот пусковой выключатель должен выключаться при 75 — 80% синхронной скорости низкоскоростной обмотки.

Рис. 4. Схема двухскоростного двигателя с расщепленной фазой

Если схема, показанная на рис. 4, применяется для двигателя с конденсаторным пуском, то используется или 1 конденсатор, соединенный последовательно с пусковым выключателем, или 2 конденсатора, 1 из которых соединяется последовательно с выводом П2, а другой — с выводом П21.

Если двигатель всегда можно пускать при соединении, соответствующем одной и той же скорости, то одна из вспомогательных обмоток может быть исключена. Пуск в этом случае частично или полностью автоматизируется.

Многоскоростные асинхронные однофазные электродвигатели ДАСМ

Для достижения больших частот вращения в бытовой технике часто необходимы электродвигатели с большим соотношением скоростей вращения ротора. Для этих целей применяются однофазные конденсаторные асинхронные двигатели с числами полюсов 2/12; 2/14; 2/16; 2/18; 2/24 и даже выше.

Читать еще:  Холодный пуск двигателя жигули

Однако изготовление двигателей с большим соотношением полюсов технологически сложно, поэтому пользуются разного рода механическими преобразователями частоты вращения, а также полупроводниковыми преобразователями частоты питающего напряжения.

Наиболее просто частота вращения в небольших пределах у этих двигателей регулируется изменением напряжения питания, для этого последовательно с обмоткой включаются дополнительные резисторы или дроссели.

Еще в СССР для привода бытовых автоматических стиральных машин был разработан двухскоростные конденсаторные электродвигатели типа ДАСМ-2 и ДАСМ-4 с числом полюсов 16/2.

Двигатель ДАСМ-2 был разработан для привода, автоматических стиральных машин емкостью 4 — 5 кг сухого белья. Первоначально он был рассчитан на номинальные мощности 75/400 Вт при частотах вращения 390/2750 об/мин.

Рис. 5. Двухскоростной конденсаторный асинхронный электродвигатель типа ДАСМ-2

На рис. 5 показаны схемы включения двигателей ДАСМ-2 и ДАСМ-4 в питающую сеть. Как видно из рисунка, двигатель ДАСМ-2 имеет на статоре четыре обмотки. Главная и вспомогательная обмотки соединены по параллельной схеме включения.

Двигатель ДАСМ-4 на низкой частоте вращения выполнен с трехфазной схемой включения в звезду, а на высокой частоте вращения — с параллельным включением обмоток статора. На статоре двигателя укреплено температурное реле РК-1-00 для защиты обмоток при перегрузках и в режимах короткого замыкания. Нормально замкнутые контакты реле включены в общий вывод статора электродвигателя.

Рис. 5. Схемы подключения двухскоростных электродвигателей к сети питания: а — электродвигателя ДАСМ-2; б — электродвигателя ДАСМ-4. Г.О. — главная обмотка; В.О, — вспомогательная обмотка; 1 — общий вывод обмоток малой и большой частоты вращения; 2 — конец вспомогательной обмотки большой частоты вращения; 3 — начало главной обмотки большой частоты вращения; 4 — начало вспомогательной обмотки низкой частоты вращения; 5 — начало главной обмотки низкой частоты вращения; Ср — рабочий конденсатор; Сп — пусковой конденсатор; РТ — реле тепловое защитное типа РК-1-00; РП — реле пусковое типа РТК-1-11; Р1, Р2 — контакты командоаппарата.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Неисправности электрооборудования и способы их устранения — Работа асинхронного двигателя при неноминальных условиях

Содержание материала

  • Неисправности электрооборудования и способы их устранения
  • Устройство силового трансформатора
  • Принцип действия трансформатора, хх и кз
  • Пускорегулирующая аппаратура
  • Устройство электрических машин постоянного тока
  • Принцип действия генератора и двигателя постоянного тока
  • Двигатели постоянного тока с различными системами возбуждения
  • Устройство синхронных машин
  • Низкое сопротивление изоляции обмоток электрических машин
  • Пропитка и сушка обмоток электрических машин
  • Сушка обмоток силовых трансформаторов
  • Способы сушки обмоток силовых трансформаторов
  • Определение качества трансформаторного масла
  • Механические неисправности электрических машин
  • Работа асинхронного двигателя при неноминальных условиях
  • Внутренний обрыв одной фазы статора асинхронного двигателя
  • Другие неисправности асинхронного двигателя
  • Неисправности обмоток статора и ротора асинхронного двигателя
  • Соединение обмотки асинхронного двигателя с корпусом
  • Междуфазное замыкание двигателя
  • Маркировка выводных концов электрических машин переменного тока
  • Определение паспортных данных асинхронного электродвигателя
  • Установки повышенной частоты из двух асинхронных машин и их неисправности
  • Неисправности машин постоянного тока и способы их устранения
  • Маркировка выводных концов машин постоянного тока, паспортные данные
  • Неисравности синхронных машин и способы их устраненияе
  • Неисправности силовых трансформаторов и способы их устранения
  • Разборка и сборка, маркировка выводных концов трансформатора
  • Неисправности пускорегулирующей аппаратуры и способы их устранения
  • Вопросы по технике безопасности при испытаниях и ремонте электрооборудования

НЕИСПРАВНОСТИ АСИНХРОННЫХ ДВИГАТЕЛЕЙ И СПОСОБЫ ИХ УСТРАНЕНИЯ
Работа асинхронного двигателя при неноминальных условиях
Отклонение напряжения питающей сети от номинального значения. Напряжение сельских электрических сетей колеблется в значительных пределах. Допускается отклонение напряжения у потребителей ±7,5%.
При пониженном напряжении сети уменьшается намагничивающий ток двигателя (ток холостого хода), снижается частота вращения ротора, увеличивается скольжение, растет роторный ток.
При пуске двигателя под нагрузкой резко уменьшаются пусковой и максимальный моменты и двигатель может не развернуться. Величина статорного тока при значительных нагрузках двигателя обыкновенно увеличивается, что ведет к перегреву обмоток статора и ротора. При значительном понижении напряжения двигатель может остановиться, при этом он потребляет очень большой ток.
При повышенном напряжении сети увеличивается намагничивающий ток двигателя (ток холостого хода), что ведет к перегреву активной стали статора; несколько увеличивается частота вращения; уменьшается скольжение; уменьшается роторный ток. Пусковой и максимальный моменты двигателя возрастают.
При значительных повышениях напряжения двигатель на холостом ходу потребляет ток, близкий к номинальному, а под нагрузкой величина статорного тока может быть выше номинального значения. Коэффициент мощности двигателя уменьшается, обмотка статора перегревается за счет теплопередачи от чрезмерно нагретой активной стали и от протекающего по ней тока.
Из сказанного следует, что отклонение напряжения сети от номинального значения чаще всего приводит к перегреву обмотки двигателя, перегрев обмотки в сильной степени сокращает срок службы изоляции. В конечном счете происходит пробой изоляции между обмоткой и корпусом, между фазами статора или между витками.
При отклонениях напряжения необходимо уменьшить нагрузку, чтобы ток статора был номинальным. В некоторых случаях можно увеличить или уменьшить напряжение путем перестановки анцапфного переключателя трансформатора. Иногда приходится увеличивать сечение проводов питающей сети.
Асимметрия напряжения питающей сети. При неравномерной нагрузке фаз сети напряжение становится асимметричным — неодинаковым между отдельными фазами. Асимметрия напряжения приводит к тому, что токи в фазах обмотки статора электродвигателя резко отличаются один от другого. Фаза с большим током может перегреваться выше допустимых пределов даже при небольшой асимметрии напряжения. Кроме того, перегревается активная сталь ротора двигателя. Асимметрия напряжения мало влияет на момент двигателя и на частоту вращения. Асимметрию напряжения можно обнаружить с помощью вольтметра, а также измерением величины тока в отдельных фазах двигателя, например токоизмерительными клещами. При асимметрии напряжения необходимо уменьшить нагрузку на электродвигатели и устранить неравномерную нагрузку фазы.
Обрыв фазы питающей сети. При обрыве фазы сети работающие трехфазные двигатели переходят в однофазный режим.
Если нагрузка двигателя до обрыва фазы была не более 60% номинальной, то двигатель продолжает работать с несколько худшими энергетическими показателями, частота вращения ротора уменьшается незначительно, температура обмоток находится в допустимых пределах. При больших нагрузках обмотка двигателя чрезмерно перегревается, а в отдельных случаях ротор двигателя останавливается и по двум фазам обмотки статора течет большой ток. Двигатель после остановки не может быть запущен даже на холостом ходу, так как в двигателе при однофазном токе получается пульсирующее магнитное поле. Обрыв одной из фаз питающей сети чаще всего бывает вследствие перегорания плавкой вставки, защищающей двигатель. При подозрении на обрыв одной из фаз сети следует двигатель остановить и пустить его вновь на холостом ходу. Если фаза оборвана, то двигатель гудит и не разворачивается.
Отсутствующую фазу можно найти с помощью вольтметра. Для этого питающие провода отключают от двигателя и ставят gод напряжение, вольтметр следует включать между линейными проводами: первым и вторым, вторым и третьим, третьим и первым. Вольтметр покажет напряжение из трех включений только один раз на целых проводах.
При обрыве фазы питающей сети все двигатели останавливают и принимают меры к восстановлению нормального напряжения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector