Электрическая схема двигателя смешанного возбуждения
Возбуждение двигателя постоянного тока. Схемы возбуждения.
Возбуждение двигателя постоянного тока является отличительной особенностью таких двигателей. От типа возбуждения зависят механические характеристики электрических машин постоянного тока. Возбуждение может быть параллельным последовательным смешанным и независимым. Тип возбуждения означает, в какой последовательности включены обмотки якоря и ротора.
При параллельном возбуждении обмотки якоря и ротора включаются параллельно друг другу к одному источнику тока. Так как у обмотки возбуждения больше витков чем у якорной то и ток в ней течет незначительный. В цепи, как обмотки ротора, так и обмотки якоря могут включаться регулировочные сопротивления.
Обмотка возбуждения может подключаться и к отдельному источнику тока. В этом случае возбуждение будет называться независимым. У такого двигателя характеристики будут схожи с двигателем, в котором применяется постоянный магнит. Скорость вращения двигателя с независимым возбуждением, как и у двигателя с параллельным возбуждением зависит от тока якоря и основного магнитного потока. Основной магнитный поток создается обмоткой ротора.
Скорость вращения можно регулировать с помощью реостата включенного в цепь якоря изменяя тем самым ток в нем. Также можно регулировать ток возбуждения, но здесь нужно быть осторожным. Так как при его чрезмерном уменьшении или полном отсутствии в результате обрыва питающего провода ток в якоре может возрасти до опасных значений.
Также при малой нагрузке на валу или в режиме холостого хода скорость вращения может настолько увеличится, что может привести к механическому разрушению двигателя.
Если обмотка возбуждения включена последовательно с якорной, то такое возбуждение называется последовательным. При этом через якорь и обмотку возбуждения протекает один и тот же ток. Таким образом, магнитный поток изменяется с изменением нагрузки двигателя. А следовательно скорость двигателя будет зависеть от нагрузки.
Двигатели с таким возбуждением нельзя запускать на холостом ходу либо с небольшой нагрузкой на вал. Их применяют в том случае если, требуется большой пусковой момент или способность выдерживать кратковременные перегрузки.
При смешанном возбуждении используются двигатели, у которых на каждом полюсе есть по две обмотки. Их можно включить так чтобы магнитные потоки как складывались, так и вычитались.
В зависимости от того как соотносятся магнитные потоки двигатель с таким возбуждением может работать как двигатель с последовательным так и двигатель с параллельным возбуждением. Все зависит от ситуации, если нужен большой стартовый момент, такая машина работает в режиме согласного включения обмоток. Если же необходима постоянная скорость вращения, при динамически изменяющейся нагрузке применяют встречное включение обмоток.
В машинах постоянного тока можно изменять направление движения ротора. Для этого необходимо изменить направление тока в одной из обмоток. Якорной либо возбуждения. Изменением полярности направление вращения двигателя можно добиться только в двигателе с независимым возбуждением, или в котором используется постоянный магнит. В других схемах включения нужно переключать одну из обмоток.
Стартовый ток в машине постоянного тока достаточно велик, поэтому ее следует запускать с добавочным реостатом, чтобы избежать повреждения обмоток.
Схема двигателя постоянного тока
Электродвигатели, работающие на постоянном токе, используются не так часто, как двигатели переменного тока. Ниже приведем их достоинства и недостатки.
Достоинства | Недостатки |
частота вращения легко регулируется | высокая стоимость |
мягкий пуск и плавный разгон | сложность конструкции |
получение частоты вращения выше 3000 об/мин | сложность в эксплуатации |
В быту двигатели постоянного тока нашли применение в детских игрушках, так как источниками для их питания служат батарейки. Используются они на транспорте: в метрополитене, трамваях и троллейбусах, автомобилях. На промышленных предприятиях электродвигатели постоянного тока применяются в приводах агрегатов, для бесперебойного электроснабжения которых используются аккумуляторные батареи.
- Конструкция и обслуживание двигателя постоянного тока
- Схемы включения двигателя постоянного тока
- Независимое возбуждение
- Параллельное возбуждение
- Последовательное возбуждение
- Смешанное возбуждение
Конструкция и обслуживание двигателя постоянного тока
Основной обмоткой двигателя постоянного тока является якорь, подключающийся к источнику питания через щеточный аппарат. Якорь вращается в магнитном поле, создаваемом полюсами статора (обмотками возбуждения). Торцевые части статора закрыты щитами с подшипниками, в которых вращается вал якоря двигателя. С одной стороны на этом же валу установлен вентилятор охлаждения, прогоняющий поток воздуха через внутренние полости двигателя при его работе.
Схема двигателя постоянного тока
Щеточный аппарат – уязвимый элемент в конструкции двигателя. Щетки притираются к коллектору, чтобы как можно точнее повторять его форму, прижимаются к нему с постоянным усилием. В процессе работы щетки истираются, токопроводящая пыль от них оседает на неподвижных частях, ее периодически нужно удалять. Сами щетки нужно иногда перемещать в пазах, иначе они застревают в них под действием той же пыли и «зависают» над коллектором. Характеристики двигателя зависит еще и от положения щеток в пространстве в плоскости вращения якоря.
Со временем щетки изнашиваются и заменяются. Коллектор в местах контакта со щетками тоже истирается. Периодически якорь демонтируют и протачивают коллектор на токарном станке. После протачивания изоляция между ламелями коллектора срезается на некоторую глубину, так как она прочнее материала коллектора и при дальнейшей выработке будет разрушать щетки.
Схемы включения двигателя постоянного тока
Наличие обмоток возбуждения – отличительная особенность машин постоянного тока. От способов их подключения к сети зависят электрические и механические свойства электродвигателя.
Независимое возбуждение
Обмотка возбуждения подключается к независимому источнику. Характеристики двигателя получаются такие же, как у двигателя с постоянными магнитами. Скорость вращения регулируется сопротивлением в цепи якоря. Регулируют ее и реостатом (регулировочным сопротивлением) в цепи обмотки возбуждения, но при чрезмерном уменьшении его величины или при обрыве ток якоря возрастает до опасных значений. Двигатели с независимым возбуждением нельзя запускать на холостом ходу или с малой нагрузкой на валу. Скорость вращения резко увеличится, и двигатель будет поврежден.
Схема независимого возбуждения
Остальные схемы называют схемами с самовозбуждением.
Параллельное возбуждение
Обмотки ротора и возбуждения подключаются параллельно к одному источнику питания. При таком включении ток через обмотку возбуждения в несколько раз меньше, чем через ротор. Характеристики электродвигателей получаются жесткими, позволяющие использовать их для привода станков, вентиляторов.
Регулировка скорости вращения обеспечивается включением реостатов в цепь ротора или последовательно с обмоткой возбуждения.
Последовательное возбуждение
Обмотка возбуждения включается последовательно с якорной, по ним течет один и тот же ток. Скорость такого двигателя зависит от его нагрузки, его нельзя включать на холостом ходу. Но он обладает хорошими пусковыми характеристиками, поэтому схема с последовательным возбуждением применяется на электрифицированном транспорте.
Схема последовательного возбуждения
Смешанное возбуждение
При этой схеме используются две обмотки возбуждения, расположенные попарно на каждом из полюсов электродвигателя. Их можно подключить так, чтобы потоки их либо складывались, либо вычитались. В результате двигатель может иметь характеристики как у схемы последовательного или параллельного возбуждения.
Схема смешанного возбуждения
Для изменения направления вращения изменяют полярность одной из обмоток возбуждения. Для управления пуском электродвигателя и скоростью его вращения применяют ступенчатое переключение сопротивлений.
Электрическая схема двигателя смешанного возбуждения
Электродвигателю постоянного тока со смешанным возбуждением (компаундному электродвигателю) до некоторой степени присущи свойства рассмотренных выше электродвигателей с параллельным и последовательным возбуждением. Данный электродвигатель снабжается двумя обмотками возбуждения: последовательной и параллельной.
Принципиальная схема такого электродвигателя приведена на рис. 31, где последовательная обмотка обозначена СОВ, а параллель ная— ШОВ. Обычно на клеммных коробках электродвигателей обозначают: выводы от последовательной обмотки С 1 и С 2 , выводы от параллельной обмотки — Ш 1 и Ш 2 , а выводы от обмотки якоря — Я 1 и Я 2 . На схемах же указанные обмотки могут обозначаться по-разному: СОВ и ШОВ, С 1 — С 2 и Ш 1 —Ш 2 .
Последовательная и параллельная обмотки возбуждения могут включаться двояким образом. В одних случаях они включаются так, чтобы создаваемые ими ампер-витки, а следовательно, и магнитные потоки складывались. Такое включение обмоток принято называть согласным. Очевидно, что при согласном включении результирующий магнитный поток электродвигателя
В других случаях обмотки возбуждения включаются в цепь таким образом, чтобы создаваемые ими ампер-витки (и магнитные потоки) были направлены навстречу друг другу. Такое включение обмоток называют встречным. При встречном включении результирующий магнитный поток электродвигателя
Встречное включение обмоток возбуждения применяется лишь в машинах специального назначения. В обычных же крановых электродвигателях со смешанным возбуждением обмотки всегда включены согласно, поэтому при дальнейшем изложении материала будем предполагать, что ампер-витки обеих обмоток (и магнитные потоки) складываются, т. е. обмотки включены согласно и для электродвигателя справедливо равенство (69).
Наличие двух обмоток возбуждения позволяет конструировать и изготавливать электродвигатели с различными свойствами и характеристиками. При естественной схеме включения характеристики рассматриваемого электродвигателя жестче, чем у электродвигателей с последовательным возбуждением, и мягче, чем у электродвигателей с параллельным возбуждением. Однако в зависимости от соотношения ампер-витков, создаваемых параллельной и последовательной обмотками, характеристики электродвигателя по своему характеру приближаются либо к характеристикам электродвигателя с последовательным возбуждением, либо с параллельным.
Для подъемно-транспортных машин выпускаются электродвигатели, в которых при полной нагрузке половина ампер-витков возбуждения создается параллельной обмоткой, а половина — последовательной.
В случае изменения нагрузки магнитный поток электродвигателя со смешанным возбуждением не остается постоянным, так как ампер-витки, создаваемые последовательной обмоткой, определяются током якоря. Зависимость результирующего магнитного потока от тока якоря приведена на рис. 32, а, который показывает, что каждому значению тока якоря соответствует определенный магнитный поток и, следовательно, вращающий момент М = кФI я при изменении нагрузки меняется не только за счет изменения тока якоря, но и за счет магнитного потока возбуждения. Зависимость М = f (I я ) для электродвигателя со смешанным возбуждением показана на рис. 32, б.
Электродвигатели с последовательным возбуждением
К валу двигателя подключена нагрузка (то, что он должен крутить)
Если проверить как будет меняться момент двигателя по мере разгона нагрузки, то оказывается, что сначала, он самый большой, постепенно снижается.
Механическая характеристика электродвигателя с последовательным возбуждением.
Из характеристики видно, что пока двигатель не тронулся с места (обороты раны нулю) крутящий момент максимальный.
Это самое подходящее свойство для пуска тяжелых нагрузок. Момент должен быть максимальным именно тогда, когда нагрузка еще не сдвинулась с места. Дальше, по мере разгона, момент сопротивления снижается, поэтому момент электродвигателя способен поддерживать вращение нагрузки. Такие свойства подходят для многих случаев, когда надо сдвинуть с места, например, электропоезд, подъемный механизм и т. д.
Начало вращения двигателя внутреннего сгорания тоже тяжелый процесс. Детали двигателя имеют внушительную массу, а кроме того, двигатель сразу же начинает сжимать воздух в части цилиндров, поэтому провернуть его очень непросто.
Таким образом, для стартера нужно использовать двигатель с последовательным возбуждением. У него самый большой крутящий момент, пока он еще не тронулся с места.
Схема электродвигателя стартера с последовательным возбуждением
Обмотки возбуждения расположены вокруг якоря с минимальным зазором, чтобы создать сильное магнитное поле. Ток возбуждения и ток якоря это один и тот же ток, он сначала проходит через одну обмотку возбуждения, потом через вторую, потом через плюсовые щетки, связанные перемычкой, проходит чрез якорь на минусовые щетки.
Другой вариант, тоже последовательное возбуждение, только ток возбуждения разветвляется на две ветви.
Еще одна схема на которой показана полярность намагничивания
Двигатель с последовательным возбуждением имеет опасный недостаток
Если его раскрутить и отпустить (снять нагрузку) он начнет легко раскручиваться дальше, обороты вырастут настолько, что проводники центробежной силой выдернет из ротора, это печальный конец, стартер заклинит и его надо будет сдать в металлолом.
Коротко можно записать так: электродвигатель с последовательным возбуждением склонен к разносу.
Электродвигатель с смешанным возбуждением
Двигатель с параллельным возбуждением значительно хуже справится с началом вращения, но зато, он не боится разноса.
Компромиссное решение состоит в том, что для стартерного электродвигателя применяют смешанную схему возбуждения – основная обмотка последовательная и вспомогательная параллельная. Параллельная обмотка тоже помогает крутить электродвигатель, он она еще и не дает стартеру уйти в разнос.
В этой схеме ток от аккумулятора разветвляется, часть тока идет через левую обмотку возбуждения и последовательно идет через щетки в якорь. Другая часть тока идет через правую, параллельную обмотку возбуждения, сразу на минус.
Большая часть поздних схем стартеров с электромагнитным возбуждением сделаны именно по такой схеме.