Электропривод двигателя постоянного тока схема
Система генератор — двигатель постоянного тока
В различных станках часто требуется бесступенчатое регулирование частоты вращения привода в пределах более широких, чем те, которые может обеспечить регулирование посредством изменения магнитного потока двигателя постоянного тока с параллельным возбуждением. В этих случаях применяют более сложные системы электропривода.
На рис. 1 представлена схема регулируемого электропривода по системе генератор — двигатель (сокращенно Г — Д). В этой системе асинхронный двигатель АД непрерывно вращает генератор Г постоянного тока с независимым возбуждением и возбудитель В, представляющий собой маломощный генератор постоянного тока с параллельным возбуждением.
Двигатель постоянного тока Д приводит в движение рабочий орган станка. Обмотки возбуждения ОВГ генератора и ОВД двигателя питаются от возбудителя В. Изменяя реостатом 1 сопротивление цепи возбуждения генератора Г, меняют напряжение, подводимое к якорю двигателя Д, и тем самым регулируют частоту вращения двигателя. Двигатель при этом работает с полным и неизменным потоком, так как реостат 2 выведен.
При изменении напряжения U меняется частота вращения n 0 идеального холостого хода двигателя Д. Так как поток двигателя и сопротивление цепи его якоря не меняются, то угловой коэффициент b остается постоянным. Поэтому прямолинейные механические характеристики, соответствующие разным значениям U, расположены одна под другой и параллельны друг другу (рис. 2).
Рис. 1. Система генератор — двигатель постоянного тока (дпт)
Рис. 2. Механические характеристики системы генератор — двигатель постоянного тока
Они имеют больший наклон, чем характеристики такого же электродвигателя, питаемого от сети постоянного тока, так как в системе Г — Д напряжение U при неизменном токе возбуждения генератора с увеличением нагрузки снижается согласно зависимости:
где Ег и r г— соответственно э. д. с. и внутреннее сопротивление генератора.
По аналогии с асинхронными двигателями обозначим
Эта величина характеризует уменьшение частоты вращения двигателя при повышении нагрузки от нуля до номинальной. Для параллельных механических характеристик
Эта величина возрастает по мере уменьшения n0. При больших значениях sн заданные режимы резания будут значительно изменяться при случайных колебаниях нагрузки. Поэтому диапазон регулирования напряжением обычно не превышает 5:1.
С уменьшением номинальной мощности двигателей падение напряжения в них увеличивается, и механические характеристики получают больший наклон. По этой причине снижают диапазон регулирования напряжением системы Г — Д по мере уменьшения мощности (при мощностях менее 1 кВт до 3:1 или 2:1).
С уменьшением магнитного потока генератора на его напряжении в большей степени сказывается размагничивающее действие реакции его якоря. Поэтому характеристики, относящиеся к низким частотам вращения двигателя, фактически имеют больший наклон, чем механические характеристики.
Расширение диапазона регулирования достигается уменьшением магнитного потока двигателя Д посредством реостата 2 (см. рис. 1), производимым при полном потоке генератора Этому способу регулирования скорости соответствуют характеристики, расположенные выше естественной (см. рис. 2).
Общий диапазон регулирования, равный произведению диапазонов регулирования обоими способами, достигает (10 — 15) : 1. Регулирование изменением напряжения является регулированием с постоянным моментом (поскольку магнитный поток двигателя остается неизменным). Регулирование изменением магнитного потока двигателя Д является регулированием с постоянной мощностью.
Перед пуском двигателя Д реостат 2 (см. рис. 1) полностью выводят, и поток двигателя достигает наибольшего значения. Затем реостатом 1 увеличивают возбуждение генератора Г. Это вызывает повышение напряжения, и скорость двигателя Д увеличивается. Если обмотку ОВГ включить сразу на полное напряжение UB возбудителя В, то ток в ней, как во всякой цепи, обладающей индуктивностью и активным сопротивлением, будет нарастать:
где rв — сопротивление обмотки возбуждения, LB — ее индуктивность (влиянием насыщения магнитопровода пренебрегаем).
На рис. 3, а (кривая 1) представлен график зависимости тока возбуждения от времени. Ток возбуждения нарастает постепенно; скорость нарастания определяется соотношением
где Тв — электромагнитная постоянная времени обмотки возбуждения генератора; имеет размерность времени.
Рис. 3. Изменение тока возбуждения в системе Г—Д
Изменение напряжения генератора при пуске имеет примерно такой же характер, как и изменение силы тока возбуждения. Это дает возможность автоматического прямого пуска двигателя с выведенным реостатом 1 (см. рис. 1).
Нарастание тока возбуждения генератора часто ускоряют (форсируют), прикладывая в начальный момент к обмотке возбуждения напряжение, превышающее номинальное. Процесс нарастания возбуждения будет при этом протекать по кривой 2 (см. рис. 3, а). Когда сила тока в обмотке достигнет величины Iв1 равной установившейся силе тока возбуждения при номинальном напряжении, напряжение на обмотке возбуждения уменьшают до номинального. Время нарастания тока возбуждения до номинального уменьшается.
Для форсирования возбуждения генератора напряжение возбудителя В (см. рис. 1) выбирают в 2—3 раза превышающим номинальное напряжение обмотки возбуждения генератора и вводят в схему добавочный резистор 4. Замыкая на время пуска этот резистор накоротко контактом 5, на обмотку возбуждения подают повышенное напряжение.
Система генератор — двигатель позволяет осуществить торможение с рекуперацией. Для торможения необходимо, чтобы ток в якоре изменил свое направление. Момент при этом также изменит знак и вместо движущего станет тормозным. Торможение возникает при увеличении магнитного потока электродвигателя реостатом 2 или при уменьшении напряжения генератора реостатом 1. В обоих случаях э. д. с. Е двигателя становится выше напряжения U генератора. При этом двигатель Д работает в генераторном режиме и приводится во вращение кинетической энергией движущихся масс, а генератор Г работает в двигательном режиме, вращая со сверхсинхронной скоростью машину АД, которая при этом переходит в режим генератора и отдает энергию в сеть.
Торможение с рекуперацией можно осуществить и без воздействия на реостаты 1 и 2. Можно просто разомкнуть цепь возбуждения генератора (например, переключателем 3). При этом ток в замкнутой цепи, состоящей из обмотки возбуждения генератора и резистора 6, будет постепенно уменьшаться
где R — сопротивление резистора 6.
График, соответствующий этому уравнению, приведен на рис. 3, б. Постепенное уменьшение тока возбуждения генератора в данном случае равносильно увеличению сопротивления реостата 1 (см. рис.1) и вызывает рекуперативное торможение. В данной схеме резистор 6, включенный параллельно обмотке возбуждения генератора, является разрядным. Он предохраняет изоляцию обмотки возбуждения от пробоя в случае внезапного аварийного обрыва цепи возбуждения.
При обрыве цепи возбуждения магнитный поток машины резко уменьшается, наводит в витках обмотки возбуждения э. д. с. самоиндукции настолько большую, что она может вызвать пробой изоляции обмотки. Разрядный резистор 6 создает контур, в котором э. д. с. самоиндукции обмотки возбуждения вызывает ток, замедляющий уменьшение магнитного потока.
Падение напряжения на разрядном резисторе равно напряжению на обмотке возбуждения. Чем меньше величина разрядного сопротивления, тем меньше будет напряжение на обмотке возбуждения при разрыве цепи. Вместе с тем при уменьшении величины сопротивления разрядного резистора возрастают непрерывно протекающий по нему в нормальном режиме ток и потери в нем. При выборе величины разрядного сопротивления должны быть учтены оба указанных положения.
После отключения обмотки возбуждения генератора на его зажимах вследствие остаточного магнетизма сохраняется некоторое небольшое напряжение. Оно может вызвать медленное вращение двигателя с так называемой ползучей скоростью. Для устранения этого явления обмотку возбуждения генератора после отключения от возбудителя присоединяют к зажимам генератора так, чтобы напряжение от остаточного магнетизма вызвало в обмотке возбуждения генератора размагничивающий ток.
Для реверса электродвигателя Д меняют направление тока в обмотке возбуждения ОВГ генератора Г посредством переключателя 3 (или иного аналогичного устройства). Вследствие значительной индуктивности обмотки ток возбуждения при этом постепенно уменьшается, меняет направление, а затем постепенно нарастает.
Процессы пуска, торможения и реверса двигателя в рассматриваемой системе отличаются высокой экономичностью, так как их осуществляют без применения реостатов, включенных в цепь якоря. Двигатель пускают и тормозят с помощью легкой и компактной аппаратуры, управляющей лишь небольшими токами возбуждения. Поэтому данную систему «генератор — двигатель постоянного тока» целесообразно использовать для работы с частыми пусками, торможениями и реверсами.
Основными недостатками системы генератор — двигатель постоянного тока являются относительно низкий коэффициент полезного действия, высокая стоимость и громоздкосгь, определяемые наличием в системе большого числа электрических машин. Стоимость системы превышает стоимость одного короткозамкнутого асинхронного двигателя такой же мощности в 8 — 10 раз. Кроме того, такая система электропривода требует много места.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Ранее на эту тему: Электропривод
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
ИССЛЕДОВАНИЕ ТИРИСТОРНОГО ЭЛЕКТРОПРИВОДА ПОСТОЯННОГО ТОКА С ПРИМЕНЕНИЕМ ПЭВМ
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ
Государственное образовательное учреждение
высшего профессионального образования
«Московский государственный институт электроники и математики
Кафедра «Управление и информатика
в технических системах »
ИССЛЕДОВАНИЕ ТИРИСТОРНОГО ЭЛЕКТРОПРИВОДА ПОСТОЯННОГО ТОКА С ПРИМЕНЕНИЕМ ПЭВМ
к лабораторной работе по дисциплине
«ЭЛЕКТРОМЕХАНИЧЕСКИЕ УСТРОЙСТВА И СИСТЕМЫ»
к.т.н., проф. Фалк Г.Б.
к.т.н., доц. Денисова Т.С.
к.т.н., доц. Ваганова М.Ю.
к.т.н., докторант Володин С.М.
аспирант Шабанов Н.С.
Основным содержанием работы является обучение по теме «Электромеханические устройства и системы постоянного тока» на основе экспериментального исследования основных характеристик электроприводов постоянного тока типа «Управляемый выпрямитель – двигатель постоянного тока », в том числе с использованием компьютера. Для студентов III курса специальности «Управление и информатика в технических системах» — 220100.
Исследование тиристорного электропривода постоянного тока с применением ПЭВМ: метод. указания к лаб. работе по дисциплине “Электромеханические устройства и системы”/ Моск. Гос. институт электроники и математики; сост. Г.Б. Фалк, Т.С. Денисова, М.Ю. Ваганова, С.М. Володин, Н.С.Шабанов 2011, С. 25.
Табл. 6, Ил. 5. Библиограф.: 6 назв.
Описание предметной области.
Электропривод постоянного тока с тиристорным управляемым выпрямителем.
2. Описание стенда ЭМП1-К.
3. Выполнение лабораторной работы
3.1. Цель лабораторной работы
3.2. Порядок выполнения лабораторной работы
3.3. Выполнение заданий по лабораторной работе.
4. Содержание отчета по лабораторной работе
1.Описание предметной области
Предметом исследования являются основные регулировочные и динамические характеристики электроприводов постоянного тока с тиристорными управляемыми выпрямителями.
Тиристорный управляемый выпрямитель (УВ).
Управляемые выпрямители на тиристорах состоят из силовой части, в которую кроме самих тиристоров обычно входят специальные трансформаторы, и схемы управления тиристорами.
Силовая часть включается в одно- или трехфазную сеть переменного тока. У однофазных (по первичной стороне) трансформаторов, применяемых в преобразователях малой мощности, на вторичной стороне напряжение либо однофазное, либо двухфазное со сдвигом на 180 о . У трехфазных трансформаторов, применяемых в преобразователях средней и большой мощности, на вторичной стороне число фаз от 3 до 24.
У нереверсивных УВ полярность выходного напряжения не может изменяться, у реверсивных – может изменяться в зависимости от входного воздействия. Реверсивные УВ имеют двойной комплект тиристоров, один из которых обеспечивает вращение двигателя в одном направлении, другой – в противоположном.
Принцип работы управляемого тиристорного выпрямителя основан на том, что в положительный полупериод тиристор открывается и пропускает ток только в том случае, если на его управляющий электрод подан соответствующий импульс. Закрывается тиристор либо напряжением противоположной полярности, либо при спаде тока до нуля. Меняя момент открытия тиристора (угол запаздывания), можно изменить среднее значение выходного напряжения и тока.
Рассмотрим работу простейшего двухфазного УВ (рис.1,а), в котором двухфазная система напряжений и получена выводом средней точки вторичной обмотки трансформатора (U m – амплитуда напряжения на полуобмотке). Выпрямление и регулирование напряжения на якоре двигателя осуществляется тиристорами VS 1 и VS 2 .В момент времени, определяемый углом запаздывания (рис.1,б), на управляющий электрод тиристора VS 1 от схемы управления поступает разрешающий импульс напряжения, тиристор открывается и подает положительное напряжение на якорь двигателя. Если бы сопротивление якоря было чисто активным, то ток якоря i, протекающий через тиристор VS 1, изменялся бы по тому же закону, что и напряжение (толстая линия, ограничивающая заштрихованный участок –180 о на рис.1,б). Закрытие тиристора произошло бы при прохождении тока через нуль (напряжением противоположной полярности). Затем со сдвигом на 180 о этот процесс повторился бы в цепи тиристора VS 2 . В интервале 180 о – ( + 180 о ) ток якоря был бы равен нулю, т.е. привод работал бы в режиме прерывистого тока.
Рис.1.Принцип работы тиристорного управляемого выпрямителя
В действительности обмотка якоря обладает кроме активного сопротивления индуктивностью, и ток не может нарастать и исчезать скачком, а должен изменяться плавно. Закон изменения тока i при работе только тиристора VS 1 показан на рисунке 1,в пунктирной линией. Причем при прохождении напряжения через нуль ток в нуль не обращается, а продолжает некоторое время протекать под действием ЭДС самоиндукции якоря, преодолевая отрицательное напряжение питания. Тиристор VS 1 закрывается в момент времени, соответствующий углу , когда ток тиристора i 1 становится равным нулю; при этом график мгновенных значений выпрямленного напряжения имеет как положительный, так и отрицательный участок. При определенных условиях граница возможного интервала проводимости первого тиристора может оказаться равной или больше угла открытия второго тиристора + 180 о . Тогда при открытии тиристора VS 2 тиристор VS 1 будет закрыт, т.к. на его отрицательный электрод поступит более высокий потенциал через открывшийся тиристор VS 2 . В этот момент мгновенное значение тока тиристора VS 2 должно стать равным току якоря, протекающему до этого через тиристор VS 1 ; наступает режим непрерывного тока (рис.1,г).
Выпрямленный ток имеет две составляющие: постоянную и переменную. Постоянная составляющая обеспечивает создание вращающего момента, соответствующего нагрузке двигателя. Переменная составляющая вызывает дополнительные потери мощности в двигателе, причем она резко возрастает в режиме прерывистого тока. Поэтому в системе УВ-Д стремятся обеспечить режим непрерывного тока; в большинстве схем для этого последовательно с якорем двигателя приходится включать дополнительную индуктивность, называемую дросселем или реактором.
В рассмотренной схеме в режиме непрерывного тока = + 180 о и среднее значение выпрямленного напряжения
где – максимально возможное значение среднего напряжения, соответствующее углу запаздывания =0; U – действующее значение напряжения на полуобмотке.
Рассмотренный УВ является нереверсивным, т.е. обеспечивает только одну полярность выходного напряжения и соответственно одно направление вращения двигателя. Реверсивные УВ выполняются с двойным комплектом тиристоров, комплекты включаются по встречно- параллельной или перекрестной схемам.
2. Описание стенда ЭМП1-К.
Стенд ЭМП1-С-К предназначен для проведения лабораторных занятий по дисциплине « Электромеханические устройства и системы».
Машинная часть стенда представляет собой соединенные механически машину постоянного тока, трехфазный асинхронный двигатель и маховик. Технические данные этих машин приведены в таблице 1. В данной лабораторной работе машина постоянного тока исследуется в режиме двигателя независимого возбуждения, в качестве нагрузочной машины для исследуемого двигателя используется асинхронный двигатель в режиме динамического торможения, а маховик используется для сглаживания электромеханических переходных процессов. На одном валу с двигателями находится ротор оптоэлектронного преобразователя угловых перемещений, используемого для измерения частоты вращения роторов двигателей.
Таблица 1. Технические данные электрических машин и преобразователя
Эксплуатация крановых тиристорных электроприводов — Схемы электроприводов с тиристорным преобразователем постоянного тока
Содержание материала
- Эксплуатация крановых тиристорных электроприводов
- Тиристорные системы
- Электроприводы с импульсно-ключевыми коммутаторами в цепи ротора асинхронных фазных электродвигателей
- Электроприводы механизмов подъема с динамическим торможением
- Электропривод с двухдвигательным механизмом подъема
- Тиристорные электроприводы постоянного тока
- СИФУ
- Конструкция и наладка преобразователя
- Схемы электроприводов с тиристорным преобразователем постоянного тока
- Защита и наладка электропривода
- Тиристорные электроприводы с низкочастотными преобразователями частоты
- ТТС-100
- Схемы электроприводов с тиристорными преобразователями частоты
- Защита и наладка электроприводов с тиристорными преобразователями частоты
- Неисправности крановых тиристорных электроприводов
Тиристорные электроприводы постоянного тока применяются на кранах в основном для механизмов подъема, к которым предъявляются наиболее сложные требования по обеспечению двухзонного регулирования скорости. Схема и механические характеристики электропривода приведены соответственно на рис. 24 и 25. Регулирование скоростей в зоне от минимальной до номинальной осуществляется изменением напряжения силового выпрямителя, а в зоне скоростей выше номинальной — ослаблением поля возбуждения двигателя (уменьшением тока возбуждения) посредством выпрямителя возбуждения. Управление работой электропривода осуществляется командоконтроллером, контакты которого на схеме обозначены SM1-SM10. Исполнительный двигатель М получает питание от силового выпрямителя, имеющего, как было показано на с. 37, две группы вентилей UZ1 и UZ2. Обмотка возбуждения двигателя L-M получает питание от выпрямителя возбуждения UZ3.
Рис. 23. Форма напряжений синхронизации
В зависимости от положения рукоятки командоконтроллера устанавливается определенное выпрямленное напряжение силового выпрямителя, а значит, и частота вращения двигателя. При достижении на выходе силового выпрямителя напряжения, соответствующего номинальной скорости перемещения груза, а также при условии, что ток в цепи якоря двигателя не превышает заданного значения, соответствующего подъему груза массой, равной 30-40 % номинальной грузоподъемности, и опусканию холостого крюка, схема позволяет увеличить частоту вращения электродвигателя в 2,4-2,5 раза по сравнению с номинальной. В режиме подъема груза массой от 30 % до номинальной благодаря наличию обратной связи по току якоря, заведенной в систему регулирования выпрямителя возбуждения (см. рис. 12), обеспечивается характеристика постоянной мощности.
Рассмотрим работу схемы по позициям командоконтрол- лера. Перед началом работы включаются автоматические выключатели: преобразователя QF1, QF2 и QF4, силового ввода QF3- цепей управления QF5-QF7 и вентилятора двигателя QF8. Затем включаются реле времени КТ1, КТ2, реле напряжения КН2, реле обрыва поля КА2. В результате собирается цепь нулевого реле КН1, которе при нажатии кнопки SB2 своими дополнительными контактами включит линейный контактор КММ и контактор динамического торможения КМ1, после чего выключится реле КТ1. Включение блокировок автоматических выключателей преобразователя UZ (зажимы 376-388) и вентилятора, а также контакторов и реле в цепь нулевого реле позволяет проконтролировать правильную подготовку схемы и цепи возбуждения. При переводе рукоятки командоконтроллера в любое направление подъема или спуска включается реле КН4, размыкающие контакты которого в цепи 21-162 преобразователя разрывают цепь блокировки импульсов управления. Одновременно включаются контакторы управления тормозным электромагнитом YA-KM2-KM4. После того как ток в катушке YA нарастает до значения включения тормоза, включится токовое реле КАЗ, а контактор КМ4 отключится и введет в цепь YA балластное сопротивление R29. Через замыкающий контакт КАЗ в зависимости от направления движения получат питание реле направления КВ1 и КВ2 или КВЗ и КВ4 соответственно в направлении «Подъем» или «Спуск» груза. Замыкающие контакты этих реле подают питание от стабилизированного источника, задающего напряжение на вход задатчика интенсивности и осуществляют реверс сигнала задания.
Рис. 24. Схема электропривода постоянного тока с тиристорным преобразователем
Сигнал задания возрастает с переводом рукоятки командоконтроллера по позициям от 1-й? до 4-й благодаря закорачиванию резисторов R17-R21, при этом диоды V4 и V5 обеспечивают большее значение сопротивления на первой позиции спуска по сравнению с первой позицией подъема.
В положении 4 подъема системой автоматического регулирования преобразователя обеспечивается характеристика постоянной мощности для грузов массой от 25 до 100 % номинальной грузоподъемности. При этом напряжение на выходе силового выпрямителя равно номинальному значению (460 В), а система регулирования поддерживает постоянство тока якоря, что и соответствует режиму постоянства мощности,
поскольку Р = U1 = = -Рном- Переход на эту характеристику осуществляется под контролем реле напряжения КVI. Указанное реле отключает цепь питания реле времени КТ2, за время выдержки которого ток двигателя стабилизируется. Контакты КТ2 включают реле КНЗ, которое замыкает цепь задания на ослабление поля на входе системы регулирования выпрямителя возбуждения. На позиции 4С спуска, в отличие от подъема, для включения реле КНЗ необходимо не только срабатывание реле KV1 и КТ2, но и реле КН2, катушка этого реле находится на выходе выпрямительных мостов UZ4, UZ5 и UZ6, и включение реле зависит от значения силового тока. При холостом крюке напряжение на выходе выпрямительных мостов будет иметь значение, недостаточное для удержания реле КН2, что и приведет к включению КНЗ и ослаблению тока возбуждения двигателя. При наличии груза реле КН2 остается включенным, вследствие чего цепь питания реле КНЗ не соберется, и сигнал на ослабление поля двигателя не будет подан.
Рис. 25. Механические характеристики электропривода по схеме рис. 24
При резком переводе рукоятки командоконтроллера в крайнюю позицию подъема или спуска сигнал на вход за- датчика интенсивности силового выпрямителя подается скачком, а на выходе его нарастает по линейному закону. 60
Частота вращения двигателя при этом также будет нарастать плавно при постоянном значении пускового момента и тока двигателя. Переход двигателя на повышение частоты вращения на последних позициях командоконтроллера осуществляется под контролем реле KV1 и в зависимости от массы груза так, как это было рассмотрено выше. При переводе рукоятки командоконтроллера в обратном направлении привод переходит в тормозной режим с заданным ускорением. При этом обесточивается катушка реле КНЗ и снимается сигнал задания на ослабление поля. Напряжение на выходе силового выпрямителя плавно уменьшается, а магнитный поток плавно нарастает. Постановка рукоятки командоконтроллера в нулевое положение приведет к наложению механического тормоза.
Электропривод двигателя постоянного тока
Принципиальная схема замкнутой системы электропривода и составление ее математического описания. Уравнения во временной области и их операторные преобразования. Определение необходимого коэффициента передачи в установившемся режиме и динамика системы.
- посмотреть текст работы «Электропривод двигателя постоянного тока»
- скачать работу «Электропривод двигателя постоянного тока» (курсовая работа)
Подобные документы
Разработка и расчет системы электропривода скоростного пассажирского лифта для многоэтажных зданий. Выбор силового оборудования, анализ динамических режимов работы разомкнутой и замкнутой системы электропривода. Экономическая эффективность его применения.
дипломная работа, добавлен 28.03.2012
Описание конструкции пассажирского лифта и технологического процесса его работы. Проектирование электропривода: выбор рода тока и типа электропривода; расчет мощности двигателя; определение момента к валу двигателя; проверка по нагреву и перегрузке.
курсовая работа, добавлен 16.11.2010
Разработка системы плавного пуска двигателя постоянного тока на базе микроконтроллера. Выбор широтно-импульсного преобразователя. Разработка системы управления транзистором и изготовление печатной платы. Статические и энергетические характеристики.
курсовая работа, добавлен 29.04.2009
Анализ система электропривода и выбор рациональной системы для типа ТПМ. Расчет основных параметров насоса и двигателя. Построение технологических характеристик механизма. Проектирование типовой схемы силовых цепей управления системы электропривода.
курсовая работа, добавлен 18.05.2012
Разновидности лифтовых электроприводов. Системы с регулируемым напряжением и частотой. Состав и устройство лифта. Исходные данные и расчет мощности двигателя. Требования, обзор и выбор преобразователя частоты. Принципиальная схема устройства управления.
дипломная работа, добавлен 13.12.2013
Разработка конкурентоспособной электромеханической системы регулирования скорости, которая отвечает требованиям устойчивости, производительности, быстродействия и точности. Определение запасов устойчивости электромеханической системы по амплитуде и фазе.
курсовая работа, добавлен 03.12.2012
Разработка разомкнутой системы электропривода рабочего механизма (подъем стрелы карьерного гусеничного экскаватора). Выбор двигателя и определение каталожных данных. Расчет сопротивлений реостатов и режимов торможения. Проверка двигателя по нагреву.
курсовая работа, добавлен 13.08.2014
Расчет передаточных функций разомкнутой и замкнутой системы с относительно задающего и возмущающего воздействия. Аналоговая схема моделирования на операционных усилителях. Расчет системы на устойчивость и граничных значений коэффициента передачи системы.
практическая работа, добавлен 17.06.2017
Разработка электропривода фрикционного бездискового пресса. Описание системы «электропривод – рабочая машина», «электропривод – сеть» и «электропривод – оператор». Расчет статических механических и электромеханических характеристик двигателя и привода.
курсовая работа, добавлен 08.11.2010
Амплитудно и фазо-частотная характеристика разомкнутой системы по передаточным функциям. Переходная характеристика системы по вещественной частотной характеристике замкнутой системы. Качество работы системы в переходном и установившемся режимах.
курсовая работа, добавлен 15.09.2009
- 1
- 2
- 3
- 4
- 5
- »