0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Фазы работы двигателя впускной

Система изменения фаз газораспределения

Система изменения фаз газораспределения (общепринятое международное название Variable Valve Timing, VVT) предназначена для регулирования параметров работы газораспределительного механизма в зависимости от режимов работы двигателя. Применение данной системы обеспечивает повышение мощности и крутящего момента двигателя, топливную экономичность и снижение вредных выбросов.

К регулируемым параметрам работы газораспределительного механизма относятся:

  • момент открытия (закрытия) клапанов;
  • продолжительность открытия клапанов;
  • высота подъема клапанов.

В совокупности эти параметры составляют фазы газораспределения – продолжительность тактов впуска и выпуска, выраженную углом поворота коленчатого вала относительно «мертвых» точек. Фаза газораспределения определяется формой кулачка распределительного вала, воздействующего на клапан.

На разных режимах работы двигателя требуется разная величина фаз газораспределения. Так, при низких оборотах двигателя фазы газораспределения должны иметь минимальную продолжительность («узкие» фазы). На высоких оборотах, наоборот, фазы газораспределения должны быть максимально широкими и при этом обеспечивать перекрытие тактов впуска и выпуска (естественную рециркуляцию отработавших газов).

Кулачок распределительного вала имеет определенную форму и не может одновременно обеспечить узкие и широкие фазы газораспределения. На практике форма кулачка представляет собой компромисс между высоким крутящим моментом на низких оборотах и высокой мощностью на высоких оборотах коленчатого вала. Это противоречие, как раз и разрешает система изменения фаз газораспределения.

В зависимости от регулируемых параметров работы газораспределительного механизма различают следующие способы изменяемых фаз газораспределения:

  • поворот распределительного вала;
  • применение кулачков с разным профилем;
  • изменение высоты подъема клапанов.

Наиболее распространенными являются системы изменения фаз газораспределения, использующие поворот распределительного вала:

  • VANOS (Double VANOS) от BMW;
  • VVT-i (Dual VVT-i), Variable Valve Timing with intelligence от Toyota;
  • VVT, Variable Valve Timing от Volkswagen;
  • VTC, Variable Timing Control от Honda;
  • CVVT, Continuous Variable Valve Timing от Hyundai, Kia, Volvo, General Motors;
  • VCP, Variable Cam Phases от Renault.

Принцип работы данных систем основан на повороте распределительного вала по ходу вращения, чем достигается раннее открытие клапанов по сравнению с исходным положением.

Конструкция системы изменения фаз газораспределения данного типа включает гидроуправляемую муфту и систему управления этой муфтой.

Гидроуправляемая муфта (обиходное название фазовращатель) непосредственно осуществляет поворот распределительного вала. Муфта состоит из ротора, соединенного с распределительным валом, и корпуса, в роли которого выступает шкив привода распределительного вала. Между ротором и корпусом имеются полости, к которым по каналам подводится моторное масло. Заполнение той или иной полости маслом обеспечивает поворот ротора относительно корпуса и соответственно поворот распределительного вала на определенный угол.

В большинстве своем гидроуправляемая муфта устанавливается на распределительный вал впускных клапанов. Для расширения параметров регулирования в отдельных конструкциях муфты устанавливаются на впускной и выпускной распределительные валы.

Система управления обеспечивает автоматическое регулирование работы гидроуправляемой муфты. Конструктивно она включает входные датчики, электронный блок управления и исполнительные устройства. В работе системы управления используются датчики Холла, оценивающие положения распределительных валов, а также другие датчики системы управления двигателем: частоты вращения коленчатого вала, температуры охлаждающей жидкости, расходомер воздуха. Блок управления двигателем принимает сигналы от датчиков и формирует управляющие воздействия на исполнительное устройство – электрогидравлический распределитель. Распределитель представляет собой электромагнитный клапан и обеспечивает подвод масла к гидроуправляемой муфте и отвод от нее в зависимости от режимов работы двигателя.

Система изменения фаз газораспределения предусматривает работу, как правило, в следующих режимах:

  • холостой ход (минимальные обороты коленчатого вала);
  • максимальная мощность;
  • максимальный крутящий момент.

Другая разновидность системы изменения фаз газораспределения построена на применении кулачков различной формы, чем достигается ступенчатое изменение продолжительности открытия и высоты подъема клапанов. Известными такими системами являются:

  • VTEC, Variable Valve Timing and Lift Electronic Control от Honda;
  • VVTL-i, Variable Valve Timing and Lift with intelligence от Toyota;
  • MIVEC, Mitsubishi Innovative Valve timing Electronic Control от Mitsubishi;
  • Valvelift System от Audi.

Данные системы имеют, в основном, схожую конструкцию и принцип действия, за исключением Valvelift System. К примеру, одна из самых известных система VTEC включает набор кулачков различного профиля и систему управления.

Распределительный вал имеет два малых и один большой кулачок. Малые кулачки через соответствующие коромысла (рокеры) соединены с парой впускных клапанов. Большой кулачок перемещает свободное коромысло.

Система управления обеспечивает переключение с одного режима работы на другой путем срабатывания блокирующего механизма. Блокирующий механизм имеет гидравлический привод. При низких оборотах двигателя (малой нагрузке) работа впускных клапанов производится от малых кулачков, при этом фазы газораспределения характеризуются малой продолжительностью. При достижении оборотов двигателя определенного значение система управления приводит в действие блокирующий механизм. Коромысла малых и большого кулачков соединяются с помощью стопорного штифта в одно целое, при этом усилие на впускные клапаны передается от большого кулачка.

Другая модификация системы VTEC имеет три режима регулирования, определяемые работой одного малого кулачка (открытие одного впускного клапана, малые обороты двигателя), двух малых кулачков (открытие двух впускных клапанов, средние обороты), а также большого кулачка (высокие обороты).

Современной системой изменения фаз газораспределения от Honda является система I-VTEC, объединяющая системы VTEC и VTC. Данная комбинация существенным образом расширяет параметры регулирования двигателя.

Наиболее совершенная с конструктивной точки зрения разновидность системы изменения фаз газораспределения основана на регулировании высоты подъема клапанов. Данная система позволяет отказаться от дроссельной заслонки на большинстве режимов работы двигателя. Пионером в этой области является компания BMW и ее система Valvetronic. Аналогичный принцип использован и в других системах:

  • Valvematic от Toyota;
  • VEL, Variable Valve Event and Lift System от Nissan;
  • MultiAir от Fiat;
  • VTI, Variable Valve and Timing Injection от Peugeot.

В системе Valvetronic изменение высоты подъема клапанов обеспечивает сложная кинематическая схема, в которой традиционная связь кулачок-коромысло-клапан дополнена эксцентриковым валом и промежуточным рычагом. Эксцентриковый вал получает вращение от электродвигателя через червячную передачу. Вращение эксцентрикового вала изменяет положение промежуточного рычага, который, в свою очередь, задает определенное движение коромысла и соответствующее ему перемещение клапана. Изменение высоты подъема клапана осуществляется непрерывно в зависимости от режимов работы двигателя.

Система Valvetronic устанавливается только на впускные клапаны.

Устройство автомобилей

Фазы газораспределения

При рассмотрении рабочих циклов поршневых двигателей условно принималось, что открытие и закрытие клапанов происходит в момент нахождения поршня в верхней или нижней мертвой точке (ВМТ или НМТ).
В действительности, при работе реальных двигателей, клапаны открываются с опережением и закрываются с запаздыванием относительно мертвых точек, за счет чего достигается значительное улучшение наполнения цилиндров свежим зарядом и эффективное удаление из них отработавших газов.

Моменты открытия и закрытия клапанов, выраженные в углах поворота коленчатого вала по отношению к начальным или конечным моментам соответствующих тактов, называются фазами газораспределения.

Как известно, основная функция механизма газораспределения — обеспечить максимальную эффективность наполнения и очистки цилиндра во время работы двигателя. От того, насколько грамотно подобраны фазы газораспределения, зависит экономичность и мощность двигателя, а также его тяговые и динамические характеристики.

В двигателях без наддува впускной клапан открывается за 10…30˚ поворота коленчатого вала до прихода поршня в ВМТ и закрывается через 50…80˚ после прохождения поршнем НМТ. Выпускной клапан открывается за 40…70˚ до НМТ и закрывается после прохождения поршнем ВМТ через 10…50˚ поворота коленчатого вала. Чем быстроходнее двигатель, тем больше значение этих углов (шире фазы газораспределения).

Открытое состояние впускного клапана в начале такта сжатия обеспечивает продолжение наполнения цилиндра из-за инерции свежего заряда и разности давления окружающей среды и давления в цилиндре в начале сжатия. Опережение открытия впускного клапана рассчитывают так, чтобы к моменту прихода поршня в ВМТ клапан был уже открыт.

Предварение открытия выпускного клапана до прихода поршня в нижнюю мертвую точку (НМТ) обеспечивает очистку цилиндра на начальном этапе вследствие избыточного давления в цилиндре, поэтому работа поршня по выталкиванию газов при такте выпуска значительно уменьшается, что способствует повышению мощности двигателя.

Так как впускной клапан открывается в конце выпуска, а выпускной закрывается в начале впуска, то возникает период времени, когда оба клапана одновременно открыты. Этот период называется перекрытием клапанов. В двигателях с наддувом эти углы увеличивают.
Во время перекрытия клапанов, когда одновременно в цилиндр поступает свежий заряд, а через выпускной клапан удаляются отработавшие газы, происходит продувка цилиндров, которая улучшает газообмен. Очевидно, что наддув эффективен для дизельных двигателей, поскольку продувка цилиндров в них осуществляется чистым воздухом, а не рабочей смесью, как в карбюраторных двигателях.

Диаграмма фаз газораспределения показана на рис. 1.

Фазы газораспределения зависят от профиля кулачка распределительного вала и взаимного расположения кулачков. Если профили впускных и впускных кулачков одинаковы, то продолжительность открытого состояния клапанов тоже будет одинакова.

Изменяемые фазы газораспределения

В обычном двигателе фазы газораспределения определяются формой кулачка распределительного вала и остаются неизменными во всех диапазонах и при любых режимах работы двигателя. Однако постоянные фазы газораспределения не позволяют создавать оптимальные процессы смесеобразования для каждого конкретного режима.

Для примера рассмотрим, какие требования к газораспределению предъявляет двигатель при различных условиях нагрузки и работы.

Режим холостого хода

На этом режиме работы следует устанавливать такой угол поворота распределительного вала, который соответствует самому позднему началу открытия впускных клапанов (максимальный угол задержки, при минимальном перекрытии клапанов). Этим обеспечивается минимальное поступление отработавших газов во впускной трубопровод, что улучшает стабильность работы двигателя и снижение расхода топлива.

Режим низких нагрузок

При работе в режиме низких нагрузок перекрытие клапанов необходимо уменьшить для минимизации поступления отработавших газов во впускной трубопровод, что улучшает стабильность работы двигателя.

Режим средних нагрузок

В этом режиме необходимо увеличить перекрытие клапанов, что позволит снизить «насосные» потери. При этом часть отработавших газов поступает во впускной трубопровод, что позволяет повысить температуру рабочего цикла сжатия и уменьшить ее в процессе такта сгорания (рабочего хода), что, в свою очередь, приводит к снижению содержания оксидов азота в отработавших газах и повышению температурного КПД двигателя.

Режим высоких нагрузок при низкой частоте вращения коленчатого вала

На этом режиме должно обеспечиваться раннее закрытие впускных клапанов, чтобы обеспечить увеличение крутящего момента. Небольшое или нулевое перекрытие клапанов заставляет двигатель более четко реагировать на изменение положения дроссельной заслонки, что, например, очень важно при движении в городском транспортном потоке.

Режим высоких нагрузок при высокой частоте вращения коленчатого вала

Для того чтобы получить максимальную мощность при высокой частоте вращения коленчатого вала, необходимо обеспечить перекрытие клапанов около ВМТ с большим углом поворота коленчатого вала. Это связано с тем, что мощность в наибольшей степени зависит от максимально возможного количества топливно-воздушной смеси, попадающей в цилиндр за короткое время, но, чем выше частота вращения, тем меньше время, отводимое на заполнение цилиндра.

Читать еще:  Холодная обкатка двигателя мото

Приведенный выше анализ показывает, что механизм газораспределения должен чутко подстраиваться под конкретные условия работы двигателя, чтобы обеспечить наиболее эффективное выполнение двигателем своих функций. Очевидно, что газораспределительный механизм должен уметь изменять фазы газораспределения в зависимости от режима работы двигателя.

Осознание конструкторами необходимости применения «гибких» ГРМ, способных изменять фазы газораспределения в следящем режиме в зависимости от условий работы двигателя привело к созданию различных систем и технических решений, позволивших воплотить эту идею в жизнь.

Основными задачами системы изменения фаз газораспределения являются:

  • улучшение качества работы двигателя на холостом ходу;
  • повышение топливной экономичности двигателя;
  • оптимизация крутящего момента в области средних и высоких частот вращения коленчатого вала;
  • увеличение внутренней рециркуляции отработавших газов с сопутствующим ей снижением температуры газов при сгорании и уменьшением выброса оксидов азота;
  • увеличение мощности в области высоких частот вращения коленчатого вала.

Чтобы варьировать фазами газораспределения во время работы двигателя необходимо каким-либо образом изменять положение распределительного вала относительно коленчатого вала. При этом принцип действия привода поворота распределительного вала, для изменения фаз газораспределения, может быть любым — механическим, гидравлическим, электрическим или пневматическим.

Впервые изменение фаз газораспределения было применено на автомобилях Альфа Ромео в 1983 году. После этого такие системы стали применяться на автомобилях Мерседес, Ниссан, БМВ, Порше и др.
В 90-е годы все больше и больше двигателей стали оборудоваться системами изменения фаз газораспределения таким образом, что угол перекрытия клапанов мог изменяться в соответствии с режимами работы двигателя. В этих системах, применяемых на двигателях DOHC (с двумя распределительными валами), монтировалось специальное устройство в приводную шестерню распределительного вала впускных клапанов. Такие устройства называют изменяемыми фазами газораспределения VIVT (Variable inlet valve timing).

В связи с все более повышающимися требованиями к уменьшению выбросов токсичных веществ с отработавшими газами в настоящее время разработаны устройства, которые могут изменять фазы газораспределения во всем диапазоне возможной частоты вращения коленчатого вала двигателя, как для впускных, так и для выпускных клапанов, что позволяет регулировать количество остаточных отработавших газов в камере сгорания.
Бесступенчатое изменение фаз газораспределения позволяет, также, улучшить работу двигателя на холостом ходу и полных нагрузках, обеспечивая повышение крутящего момента и мощности.

Альтернативной механическим системам явилась более дешевая конструкция системы изменения фаз газораспределения с использованием гидроуправляемой муфты — фазовозвращателя. Такая муфта способна под действием управляющей электроники и гидравлики поворачивать распределительный вал на определённый угол относительно его первоначального положения.
С повышением оборотов муфта проворачивает вал по ходу вращения, что ведёт за собой более раннее открытие впускных клапанов и как следствие — лучшее наполнение цилиндров на высоких оборотах.

Инженеры не остановились на этом и разработали ряд систем, способных не только двигать фазы, но и расширять или сужать их. В зависимости от конструкции это может достигаться несколькими способами.

Например, в системе VVTL-i, разработанной специалистами фирмы Тойота, после достижении определённых оборотов (6000 об/мин) вместо обычного кулачка в работу включается дополнительный — с изменённым профилем. Профиль этого кулачка задаёт иную кинематику движения клапана и изменяет фазы газораспределения. При повышении частоты вращения коленчатого вала свыше 6500. 8000 об/мин у двигателя словно открывается второе дыхание, способное придать автомобилю динамический рывок при ускорении.

В настоящее время системы непрерывного изменения фаз газораспределения применяются на двигателях Ауди, Фольксваген, Тойота, Рено, Вольво и др.

Еще одно техническое решение проблемы – изменение высоты подъема клапанов, позволяющее варьировать процесс газообмена при помощи различных систем управления. В таких системах высота подъема клапанов и продолжительность фазы впуска изменяются в зависимости от нажатия на педаль газа, т. е. при помощи бездроссельного управления.
Экономия от применения системы бездроссельного управления составляет 8. 15%, прирост мощности — в пределах 5. 15 %.

В последнее время механический привод управления скоростью и высотой подъема клапанов все чаще вытесняет электромагнитный привод, как более чуткий к сигналам управляющих устройств.
Высоту, время и скорость подъёма клапана в этом случае можно довести до идеала, а продолжительность открытия клапанов позволяется менять в очень широких пределах. Электроника, в соответствии с заданной программой, может периодически не открывать «ненужные» клапаны, или вовсе отключать цилиндры от газообмена. Делается это в целях экономии, например, на холостом ходу или при торможении двигателем.

Работа инженеров и конструкторов по оптимизации и совершенствованию систем газораспределения двигателей внутреннего сгорания ведется непрерывно, чтобы полностью использовать потенциал увеличения динамических и скоростных характеристик двигателей, их экономичности и экологической безопасности.

Системы изменения фаз газораспределения двигателя

Variable Valve Timing — система изменения фаз газораспределения двигателя (международное название систем такого типа)

ФИКСИРОВАННЫЕ ФАЗЫ

Фазами газораспределения принято называть моменты открытия и закрытия впускных и выпускных клапанов, выраженные в градусах поворота коленчатого вала относительно ВМТ и НМТ.
В графическом выражении период открытия и закрытия принято показывать диаграммой.

Если мы говорим о фазах, то изменению могут поддаваться:

    • момент начала открытия впускных и выпускных клапанов;
    • продолжительность нахождения в открытом состоянии;
    • высота подъема (величина, на которую опускается клапан).

Пока ещё большинство двигателей имеют фиксированные фазы газораспределения (но тенденция стремительно меняется). Это значит, что описанные выше параметры определяются лишь формой кулачка распределительного вала. Недостаток такого конструктивного решения в том, что рассчитанная конструкторами форма кулачков для работы двигателя будет оптимальной только в узком диапазоне оборотов. Гражданские двигатели проектируются таким образом, чтобы фазы газораспределения соответствовали обычным условиям эксплуатации автомобиля. Ведь если сделать двигатель, который очень хорошо будет ехать «с низов», то на оборотах выше средних крутящий момент, как и пиковая мощность, будет слишком низким. Именно эту проблему решает система изменения фаз газораспределения.

ПРИНЦИП ДЕЙСТВИЯ VVT

Суть работы системы VVT в том, чтобы в реальном времени, ориентируясь на текущий режим работы двигателя, корректировать фазы открытия клапанов. В зависимости от конструктивных особенностей каждой из систем, реализовывается это несколькими путями:

    • поворотом распределительного вала относительно шестерни распредвала;
    • включением в работу на определенных оборотах кулачков, форма которых подходит для мощностных режимов;
    • изменением высоты подъема клапанов.

Наибольшее распространение получили системы, в которых регулировка фаз осуществляется изменением углового положения распределительного вала относительно шестерни. Несмотря на то что в работу разных систем положен схожий принцип, многие автоконцерны используются индивидуальные обозначения.

  • Renault – Variable Cam Phases (VCP).
  • BMWVANOS. Как и у большинства автопроизводителей, изначально подобной системой укомплектовывался только распределительный вал впускных клапанов. Система, в которой гидромуфты изменения фаз газораспределительного механизма устанавливается и на выпускной распредвал, называется Double VANOS.
  • Toyota — Variable Valve Timing with intelligence (VVT-i). Как в случае с БМВ, наличие системы на впускном и выпускном распредвалах именуется Dual VVT.
  • Honda — Variable Timing Control (VTC).
  • Volkswagen — выбрал международное название — Variable Valve Timing (VVT).
  • Hyundai, KIA, Volvo, GM — Continuous Variable Valve Timing (CVVT).

КАК ФАЗЫ ВЛИЯЮТ НА РАБОТУ ДВИГАТЕЛЯ

Характер поведения газов внутри ДВС изменяется в зависимости от режима работы мотора. К примеру, на холостых оборотах скорость движения поршней значительно ниже, чем в режиме работы на максимальных оборотах. Соответственно, колебания газовой среды во впускном и выпускном коллекторах значительно зависят от режимной точки работы двигателя. Упомянутые колебания способны как приносить пользу, создавая резонансный наддув, так и вред – паразитные колебания, застои. Именно поэтому скорость и эффективность наполнения цилиндров в разных режимных точках работы двигателя значительно отличаются.

На низких оборотах максимальное наполнение цилиндров будет обеспечивать позднее открытие выпускного клапана и раннее закрытие впускного. В таком случае перекрытие клапанов (положение, в котором выпускные и впускные клапаны одновременно открыты) минимально, поэтому исключается возможность выталкивания оставшихся в цилиндре выхлопных газов обратно во впуск. Именно из-за широкофазных («верховых») распределительных валов на форсированных моторах часто приходится устанавливать повышенные обороты холостого хода.

На высоких оборотах для получения максимальной отдачи от двигателя фазы должны быть максимально широкими, так как за единицу времени поршни будут прокачивать намного больше воздуха. При этом перекрытие клапанов будет положительно влиять на продувку цилиндров (выход оставшихся выхлопных газов) и последующую наполняемость.

Именно поэтому установка системы, позволяющей подстроить фазы газораспределения, а в некоторых системах и высоту подъема клапанов, под режим работы двигателя, делает двигатель эластичней, мощней, экономичней и в то же время дружелюбней к окружающей среде.

Первооткрывателями системы изменения фаз газораспределения принято считать инженеров Honda. Они воплотили в модели Integra механизм VTEC, что позволило прибавить 1,6 литровому мотору от 40 до 60 л.с.

СИСТЕМЫ С РАЗНОЙ ФОРМОЙ КУЛАЧКОВ

Такие системы появились первыми — инженеры Honda добавили к двум кулачкам управляющими открытием клапанов еще один — третий. Он имел более высокий профиль.
На низких оборотах работали низкопрофильные кулачки, а на высоких вступал в действие высокий.
Разные автоконцерны вскоре выпустили такие системы газораспределения, но уже под другими названиями:

    • HONDA — Variable Valve Timing and Lift Electronic Control (VTEC). Если на двигателе одновременно используется и VTEC, и VVT, то такая система носит аббревиатуру i-VTEC.
    • BMWVANOS.
    • AUDI — Valvelift System.
    • TOYOTA — Variable Valve Timing and Lift with intelligence от Toyota (VVTL-i).
    • MITSUBISHI — Mitsubishi Innovative Valve timing Electronic Control (MIVEC).

ПРИНЦИП РАБОТЫ

Разберем принцип работы VTEC на примере реализации от Honda (остальные системы работают по схожему принципу).

Как вы можете увидеть из схемы, в режиме низких оборотов усилие на клапаны через коромысла передается набеганием двух крайних кулачков. При этом среднее коромысло двигается «вхолостую». При переходе в режим высоких оборотов давлением масла выдвигается запорный шток (блокирующий механизм), который превращает 3 коромысла в единый механизм. Увеличение хода клапанов достигается за счет того, что среднему коромыслу соответствует кулачок распредвала с наибольшим профилем.

Разновидность системы VTEC является конструкция, в которой режимам: низких, средних и высоких оборотов соответствуют разные коромысла и кулачки. На низких оборотах кулачком меньшей формы открывается только один клапан, в режиме средних оборотов два меньших по форме кулачка открывают два клапана, а на больших оборотах уже наибольший кулачок открывает оба клапана (3-stage SOHC VTEC).

Читать еще:  Шаговый двигатель em 326 характеристики

К началу 2000 годов большинство автомобилестроителей перешли на простую и надежную систему изменения фаз, где ими управляли не кулачки, а гидравлические механизмы, расположенные в шестернях ремня ГРМ и поворачивавшие распредвал.
Несмотря на то, что, в отличие от систем подобных VTEC, поворот распредвалов не регулирует ширину фаз (ведь клапаны всегда поднимаются на одну и ту же высоту, и длительность их открытия не меняется), у него есть свои преимущества. Точнее, по принципу работы единственное, но ключевое. Эта система изменяет фазы не ступенчато — постоянно.

УСТРОЙСТВО, ПРИНЦИП РАБОТЫ VVT

За угловое смещение распределительного вала отвечает фазовращатель, представляющий собой гидромуфту, работой которой управляет ЭБУ двигателя.

Конструктивно фазовращатель состоит из ротора, который соединен с распредвалом, и корпуса, наружная часть которого является шестерней распределительного вала. Между корпусом гидроуправляемой муфты и ротором находятся полости заполненные маслом. Заполнение их приводит к перемещению ротора, а, следовательно, и смещению распредвала относительно шестерни. В полости масло подается по специальным каналам. Регулировка количества поступающего через каналы масла осуществляется электрогидравлическим распределителем. Распределитель представляет собой обычный электромагнитный клапан, который управляется ЭБУ посредством ШИМ-сигнала. Именно ШИМ-сигнал делает возможным плавное изменение фаз газораспределения.

Система управления, в виде ЭБУ двигателя, использует сигналы следующих датчиков:

    • ДПКВ (рассчитывается частота вращения коленчатого вала);
    • ДПРВ;
    • ДПДЗ;
    • ДМРВ;
    • ДТОЖ.

Очередной виток развития

Ступенчатое изменение продолжительности открытия и высоты подъема клапанов позволяет не только изменять фазы газораспределения, но и практически полностью снять с дроссельной заслонки функцию регулирования нагрузки на двигатель. Речь в первую очередь о системе Valvetronic от BMW. Именно специалисты БМВ впервые добились подобных результатов. Сейчас схожими разработками обладают: Toyota (Valvematic), Nissan (VVEL), Fiat (MultiAir), Peugeot (VTI).

Открытая на небольшой угол дроссельная заслонка создает значительное противодействие движению воздушных потоков. В итоге часть полученной от сгорания топливовоздушной смеси энергии уходит на преодоление насосных потерь, что негативно сказывается на мощности и экономически автомобиля.


1 — Серводвигатель; 2 — Червячный вал; 3 — Возвратная пружина; 4 — Кулисный блок; 5 — Распредвал впускных клапанов; 6 — Рампа; 7 — Гидравлическая система компенсации клапанного зазора (HVA) на стороне впуска; 8 — Впускной клапан; 9 — Выпускной клапан; 10 — Роликовый рычаг толкателя на стороне выпуска; 11 — Гидравлическая система компенсации клапанного зазора (HVA) на стороне выпуска; 12 — Роликовый рычаг толкателя на стороне впуска; 13 — Промежуточный рычаг; 14 — Эксцентриковый вал; 15 — Червячное колесо; 16 — Распредвал выпускных клапанов;

В системе Valvetronic количество поступающего в цилиндры воздуха регулируется степенью подъема и продолжительностью открытия клапанов. Реализовать это получилось при помощи внедрения в конструкцию эксцентрикового вала и промежуточного рычага. Рычаг связан червячной передачей с сервоприводом, управляет которым ЭБУ. Изменения положения промежуточного рычага смещает воздействие коромысла в сторону большего или меньшего открытия клапанов. Более подробно принцип работы показан на видео.

Сочетание фазовращателей на валах, бесступенчатой регулировки хода и длительности открытия клапанов позволяет, по оценкам инженеров, обрести 10–15%-процентное снижение расхода топлива и аналогичную прибавку крутящего момента.

Отказ от ГРМ

Сейчас есть разработки в которых полностью отсутствуют вращающиеся элементы ГРМ: такие как распределительный вал и приводной ремень(цепь), что существенно уменьшает потери на трение. Система электромагнитных соленоидов позволяет управлять работой клапанов. На каждый клапан предусмотрен отдельный соленоид, работу которого контролирует система управления.

На сайте вы найдете информацию о том как сделать качественный ремонт автомобиля своими руками, подробные фото отчеты по ремонту ауди с4, а также много полезной информации о диагностике и профилактике неисправностей.

Top menu

  • Главная
  • Карта сайта
  • Шинный калькулятор
  • Форум
  • Новости
  • Обратная связь

поиск google

Breadcrumbs

Меню сайта:

  • Техническое обслуживание
  • Устройство и принцип действия
  • Диагностика и устранение неисправностей
  • Фото отчеты ауди с4
  • Cоветы автомобилистам

Последние публикации

Перетяжка потолка ауди 100 с4.(Часть 3)

В первой и второй частях мы снимали обшивку потолка, сегодня же мы займемся самой перетяжкой.

Перетяжка потолка ауди 100 с4.(Часть 2)

Продолжим снятие обшивки потолка. В первой части мы сняли обшивку люка и накладки передних стоек. Сегодня мы все-таки снимем потолок.

Перетяжка потолка ауди 100 с4.(Часть 1)

В уже не молодых автомобилях, не редко можно столкнуться с проблемой провисания потолка. Происходит это, как правило, по двум причинам:

Система изменения фаз газораспределения.

Что такое фазы газораспределения в двигателе внутреннего сгорания? Именно с этого ответа на вопрос мы начнем с вами статью.

Фазами газораспределения принято считать момент с начала открытия и до конца закрытия впускного или выпускного клапана, относительно положения поршня (верхняя или нижняя мертвая точка), выраженного в градусах угла поворота коленчатого вала.

В большинстве двигателей внутреннего сгорания установленных на автомобилях, фазы газораспределения одинаковы на всех режимах работы двигателя, то есть они остаются неизменными, будь это холостой ход или режим полной нагрузки на высокой частоте вращения коленчатого вала. В результате все это сказывается на малой эффективности работы двигателя и снижению его КПД, так как на разных режимах работы требуется разная величина фаз газораспределения. Например, для низких оборотов требуются короткие фазы, имеющие минимальную продолжительность, для высоких оборотов наоборот, необходимы широкие фазы, которые будут перекрывать такт впуска и выпуска.

Мы знаем, что работой впускных и выпускных клапанов управляет распределительный вал, точнее его кулачки. Так вот, чтобы на двигателях с постоянными фазами газораспределения, добиться оптимальной работы, как на низких, так и на высоких оборотах, особое внимание инженеры конструкторы уделяют форме и размерам кулачков распредвала, ведь именно от них зависит продолжительность фазы газораспределения.

В поисках компромиссов чему больше отдать предпочтение высокому крутящему моменту на низких оборотах или повышенной мощности на высоких оборотах, инженеры потихоньку пришли к решению создать систему с изменяемыми фазами газораспределения. В которой для каждого режима работы двигателя фазы газораспределения будут индивидуальны.

Впервые система изменения фаз газораспределения была применена в 1983 на легендарной марке автомобилей Альфа Ромео. После удачного опыта, применение данной системы, она стало появляться и на других известных марках, таких как Mercedes-Benz, Porsche, BMW, Honda и др.

Основными положительными качества данной системы являлось то, что получилось добиться:

  1. Заметного улучшения работы двигателя на холостом ходу.
  2. Снижение расхода топлива.
  3. Увеличение мощности.
  4. Оптимального крутящего момента на различных оборотах.
  5. Естественной рециркуляции отработавших газов, а с ней и уменьшение выбросов оксида азота в атмосферу.

Добиться изменения фаз газораспределения можно несколькими способами, на данный момент их три:

  • с помощью поворота распредвала.
  • применение кулачков разной формы.
  • изменением высоты подъема клапанов.

Система автоматического изменения фаз газораспределения с помощью поворота распределительного вала.

Данный способ изменения фаз нашли применение на следующих марках автомобилей:

  • Toyota — VVT-i (Dual VVT-i);
  • Volkswagen — VVT;
  • Honda — VTC;
  • Volvo, Hyundai, Kia — CVVT;
  • Renault — VCP;
  • BMW VANOS;
  • General Motors;

На впускном (аналогично и на выпускном) распределительном валу расположена гидромуфта, которая под контролем блока управления поворачивает его на заданный угол, тем самым, изменяя фазу газораспределения.

Весь механизм установлен на головке блока цилиндров, снизу к нему подходят масляные каналы системы смазки двигателя для управления обоими гидромуфтами. На корпусе механизма установлены два электрогидравлических распределителя, которые и обеспечивают подвод масла к муфте.

состоит из ротора, жестко закрепленного на распределительном валу и корпуса муфты в роли, которой выступает шкив газораспределения. В роторе расположены масляные каналы, по которым масло заполняет камеры образованные между ротором и корпусом. Заполнение той или иной части камеры приводит к повороту ротору относительно корпуса, что в итоге обеспечивает поворот распределительного вала на необходимый в данный момент угол.

Сама система устроена таким образом, что в блок управления поступают основные сигналы параметров двигателя: частота вращения двигателя, расход воздуха и его температура, температура охлаждающей жидкости, данные с датчиков Холла установленных на механизме газораспределения. На основании этих данных блок управления посылает сигналы электрогидравлическим распределителям, которые в свою очередь управляют самой гидромуфтой, под действием давления масла в системе смазки автомобиля.

Система автоматического изменения фаз газораспределения с разной формой кулачков.

Эту технологию себе на вооружения взяли следующие марки: В первую очередь снова выступает Honda со своей известной системой – VTEC;

  • Toyota — VVTL-i;
  • Mitsubishi — MIVEC;
  • Audi — Valvelift System;

Данный вид системы изменения фаз газораспределения разберем на примере системы VTEC.

Система устроена следующим образом: На каждый цилиндр имеется два впускных клапана 1, три коромысла 2 и три кулачка на распределительном валу. Два крайних одного размера 3, а третий по середине большего 5.

  1. На малых оборотах под воздействием малых кулачков усилие на впускные клапана передаются через крайние коромысла, обеспечивая их открытие в данном режиме. Среднее коромысла в этом режиме работы двигателя не участвует, что в итоге обеспечивает короткие фазы газораспределения.
  2. При переходе двигателя в режим высоких оборотов автоматически срабатывает гидравлический блокирующий механизм 4, который соединяет все коромысла между собой вместе.
  3. Теперь на коромысла воздействует только средний, кулачок большего размера, что приводит к удлинению фаз газораспределения.

В другой модификации системы VTEC, в отличие от предыдущей, присутствуют три режима регулировки, на малых, на средних и на высоких оборотах. В этой системе три кулачка разного размера. На малых оборотах в работе участвует один малый кулачок, открывающий только один впускной клапан. На средних оборотах два малых кулачка открывающие оба клапана. На высоких оборотах, так же как и в предыдущем случае, один большой открывающий оба клапана.

На современных двигателях Honda использует результат двух объединенных систем VTEC и VTC, такая система получила название I-VTEC. Она более сложная, нежели ее предшественники, но в то же время благодаря объединению этих двух систем в единое целое I-VTEC получила возможность расширить параметры регулирования.

Система автоматического изменения фаз газораспределения изменением высоты подъема клапанов.

Первый успех в применении системы регулировки высоты подъема впускного клапана добилась BMW, представив в 2001 году на Женевском автосалоне своей BMW 316ti Compact с системой Valvetronic.

После успеха BMW в освоение данной системы, добились подобного результата и следующие марки:

  • Nissan — VEL;
  • Toyota – Valvematic;
  • Fiat – MultiAir;
  • Peugeot — VTI;
Читать еще:  Число оборотов двигателя от частоты

Данную систему можно считать наиболее совершенной, так как при использовании этой системы можно полностью отказаться от дроссельной заслонки, не слишком совершенного узла участвующего в регулировании подачи топливной смеси.

1) Электродвигатель (сервопривод). 2) Червячный вал. 3) Пружина возвратная. 4) Впускной распредвал. 5) Выпускной распредвал. 6) Червячная шестерня. 7) Эксцентриковый вал. 8) Промежуточный рычаг. 9) Коромысло впускного клапана. 10) Гидрокомпенсатор выпускного клапана. 11) Коромысло выпускного клапана. 12) Выпускной клапан. 13) Гидрокомпенсатор впускного клапана. 14) Впускной клапан.

В системе изменения высоты подъема клапанов помимо классической связки распределительный вал – коромысло – клапан, присутствует еще эксцентриковый вал и промежуточный рычаг.

Так же как и в предыдущих системах всем управляет блок управления, получающий сигналы с датчиков установленных на двигатели. Сопоставляя все поступившие сигналы, он посылает сигнал управления сервоприводу 1, который через червячный вал 2, вращает эксцентриковый вал 9.

Эксцентриковый вал 9 в свою очередь изменяет положение промежуточного рычага 10, а он через коромысло 11 высоту подъема впускного клапана 16 регулируя фазы газораспределения. Таким образом, данная система может очень точно подобрать необходимую фазу газораспределения на любых оборотах.

Фазами можно управлять

Важнейшие параметры двигателя — мощность и крутящий момент во многом зависят от фаз газораспределения, другими словами, от момента и продолжительности открытия клапанов. Один из недостатков, присущий почти всем автомобильным силовым установкам, заключается как раз в том, что на большей части скоростных и нагрузочных режимов фазы газораспределения не позволяют достичь наивыгоднейших мощности и момента. Это особенно сказывается при малых оборотах коленчатого вала.

Дело в том, что подбор фаз — это многосторонний компромисс, который должен обеспечить высокую литровую мощность, достаточный запас крутящего момента, пуск в холодную погоду, работу на бензине с умеренным октановым числом. Особенно влияет на параметры двигателя продолжительность открытия выпускного клапана после нижней мертвой точки (НМТ). Одни фирмы идут на сужение этой фазы выпуска, особенно у дизелей. Цель — улучшение пусковых качеств и увеличение крутящего момента. Другие, стремясь повысить литровую мощность, снизить требования к антидетонационным качествам топлива, предпочитают, наоборот, расширять ее. Пример этому двигатель ВАЗ-2108, у которого пуск заканчивается на 79° поворота коленчатого вала после НМТ по сравнению с 40° у моделей предыдущего поколения. Такой шаг открывает путь к увеличению степени сжатия и, в конечном счете, к улучшению экономичности при неизменном октановом числе бензина. В то же время сейчас есть тенденция к уменьшению перекрытия (одновременного открытия) клапанов с целью сделать двигатель экономичнее. Следовательно, в интересах уменьшения их перекрытия целесообразно открытие выпускного делать не очень ранним (относительно ВМТ).

Компромиссные сочетания параметров, на которые в большинстве случаев идут конструкторы, приводят к тому, что резервы литровой мощности двигателя, его тяговых качеств не используются целиком, растет выброс токсичных веществ, возникают другие отрицательные явления.

А если в процессе работы двигателя изменять моменты и продолжительность открытия клапанов так, чтобы для каждого скоростного режима можно было установить наивыгоднейшие? В развитие этой идеи за последние годы некоторые известные автомобильные фирмы не только получили патенты на устройства для изменения фаз, но и стали применять их в серийных двигателях. Отметим, что сама идея регулирования фаз восходит к первым годам существования автомобиля — Л. Рено выдвинул ее еще в 1902 году.

Рис. 1. Винтовой механизм «Альфа-Ромео»:

1 — электромагнит; 2 — шток; 3 — клапан; 4 — звездочка; 5 — винтовые (косозубые) шлицы; 6 — распределительный вал; 7 — полость; 8 — муфта; 9 — прямозубые шлицы.

Наиболее распространенный способ — бесступенчатое регулирование углового расположения распределительного вала относительно коленчатого (напомним, что в обычном моторе оно жестко задано шестеренным, цепным или зубчатоременным приводом).

В винтовом механизме регулирования (рис. 1) ведомая звездочка 4 привода соединена через прямозубые шлицы 9 с подвижной муфтой 8, которая, в свою очередь, посредством винтовых (косозубых) шлиц 5 связана с распределительным валом 6. Когда электромагнит 1 через шток 2 воздействует на клапан 3, в полости 7 создается давление масла, которое сдвигает муфту 8 словно поршень по косозубым шлицам. При этом она, а вместе с ней и звездочка 4 поворачиваются на некоторый угол относительно коленчатого вала.

В цепных или зубчатоременных механизмах (рис. 2) предусмотрены две регулировочные звездочки 3 или два ролика. При перемещении маятникового рычага или оправки одна из них натягивает свою ветвь цепи или ремня и смещает ее относительно ведомой звездочки.

Рис. 2. Зубчатоременный механизм:

1 — ведущая звездочка; 2 — ведомая звездочка; 3 — регулировочные звездочки.

Таким образом, она дополнительно поворачивает на небольшой угол звездочку 2, приводящую распределительный вал. В результате изменяются моменты открытия и закрытия клапанов. Другая регулировочная звездочка служит для компенсации дополнительного натяжения.

Дифференциальные механизмы (рис. 3) устанавливают между ведущим и ведомым валами. Здесь поворотом регулировочной шестерни 7 можно сообщить коробке 4 дифференциала поворот на некоторый угол, чем создается разница в угловом смещении между валами 1 и 5.

Рис. 3. Дифференциальный механизм; Рис. 4. Механизм типа «Лукас»:

Рис. 3. Дифференциальный механизм: 1 — ведущий (коленчатый) вал; 2 — муфта; 3 — промежуточный вал; 4 — коробка дифференциала; 5 — распределительный вал; 6 — промежуточная шестерня; 7 — шестерня управления фазами.

Рис. 4. Механизм типа «Лукас»: 1 — внутренний вал; 2 — наружный вал; 3 — кулачок внутреннего вала; 4 — кулачок наружного вала.

Этим схемам свойствен серьезный недостаток — одновременное изменение конца и начала момента впуска. Теоретически возможно посредством подобных устройств неограниченно варьировать угловую продолжительность впуска после НМТ. Но изменять фазу начала, а потому и общую протяженность мешает опасность встречи клапана с поршнем вблизи ВМТ. Аналогично этому ограниченны и вариации углов выпуска.

Практически возможно изменять фазы подобным способом на 30—40° от угла поворота коленчатого вала. Но и такое сравнительно небольшое изменение (при существенном усложнении конструкции) дает положительные результаты: удается улучшить пусковые качества и наполнение цилиндров на малых оборотах, увеличить запас крутящего момента и одновременно литровую мощность.

Сложнее механизм бесступенчатого регулирования фаз фирмы «Лукас». Распределительный вал состоит из двух входящих одна в другую частей (рис. 4). На каждой из них, наружной и внутренней, закреплен кулачок, а механизм (на рисунке не показан), управляющий взаимным движением, позволяет плавно поворачивать один относительно другого на угол до 44°.

Рис. 5. Схема механизма ФИАТ с переменным вдоль оси профилем кулачка.

В качестве альтернативы этим решениям фирмой ФИАТ создан механизм с кулачком переменного по длине профиля (рис. 5). В нем кулачок распределительного вала сделан заметно шире, чем цилиндрический толкатель клапана, на который он воздействует. В зависимости от частоты вращения коленчатого вала гидравлический и центробежный регуляторы (на схеме не видны) перемещают вал в осевом направлении — подводя в зону контакта участки кулачка, которым соответствуют разные фазы.

Менять продолжительность газораспределения при работе двигателя можно не только описанными выше способами, но и изменением кинематики привода клапанов. Для этого поверхности коромысел взаимодействуют с одноплечими рычагами, имеющими возможность поворота в плоскостях их качания (рис. 6). Рычаги поворачиваются под действием эксцентриков, что сопровождается перемещением линии контакта рычагов и коромысел.

Интересен способ ступенчатого регулирования фаз, запатентованный японской фирмой «Мазда». На распределительном валу два комплекта кулачков с разными профилями, оптимальными при работе двигателя в диапазонах низких и высоких частот вращения. Каждый клапан сопряжен с двумя коромыслами, соответственно контактирующими с одним и другим кулачком. Одно из коромысел включено в постоянную кинематическую связь кулачка с клапаном, а второе входит в контакт с клапаном при переходе на высокий скоростной режим посредством блокировки двух коромысел между собой.

Рис. 6. Механизм с изменением кинематики привода:

1 — коромысло; 2 — эксцентрик.

Уже известны устройства, где клапаны приводятся электромагнитами, управление которыми синхронизировано с работой системы зажигания. Но создание компактных, быстродействующих и дешевых электромагнитов с относительно большими усилиями — пока нерешенная задача.

Чтобы изменять в процессе работы двигателя фазу конца впуска, устанавливают и дополнительные устройства во впускном тракте. В частности, фирма «Фольксваген» применила в экспериментальном двигателе вращающийся цилиндрический золотник (рис. 7), приводимый через вариатор, который может перекрыть впускной канал в любой момент и тем самым изменить фазу конца впуска. Но, поскольку он вращается с той же угловой скоростью, что и распределительный вал, у окна золотника не может быть фиксированных положений (полностью открытого и полностью закрытого). Поэтому неизбежны большие потери на перетекание газов при частично открытых окнах. Кроме того, на привод золотника расходуется мощность.

Рис. 7. Механизм фирмы «Фольксваген»: 1 — золотник; 2 — окно золотника.

Сравнение разных механизмов показывает, что изменение только момента конца впуска дает серьезные преимущества на малых оборотах в условиях частичных нагрузок. На номинальной же частоте вращения необходимо запаздывание закрытия впускного клапана и увеличенное перекрытие фаз.

Варьируя момент закрытия впускного клапана, можно ощутимо изменить величину крутящего момента (рис. 8) во всем диапазоне оборотов коленчатого вала по сравнению с фиксированными фазами. Причем на низких оборотах пределы регулирования ограничивает только детонация.

По сравнению с обычным двигателем, работающим на частичных нагрузках, двигатель со смещаемым закрытием основного впускного клапана и неизменным моментом открытия имеет меньшие потери на впуске, а также пониженные удельный расход топлива, выброс СО и углеводородов.

Итак, наивыгоднейшее изменение фаз газораспределения в процессе работы двигателя способно повысить пусковые качества у дизелей, улучшить характеристики холостого хода, увеличить крутящий момент на низких скоростных режимах, снизить расход топлива у бензинового двигателя на 4—15%.

Рис. 8. Сравнение внешних скоростных характеристик двигателя ФИАТ-124 с фиксированными (сплошные линии) и переменными (прерывистые линии) фазами газораспределения.

Может показаться, что все сказанное — лишь игра изобретательской мысли или, в крайнем случае, достояние опытных образцов. Но это не так. Известные фирмы «Альфа-Ромео», «Ниссан» и другие уже серийно оборудуют автомобили двигателями с переменными фазами.

Проблемы стоимости, надежности и долговечности рассмотренных устройств предопределили пока узкий круг их применения. Но в ближайшем будущем можно ожидать более массового использования подобных механизмов благодаря появлению новых конструкторских решений.

В настоящее время, когда резервы совершенствовать двигатель другими способами исчерпываются, возможность изменения фаз привлекает внимание изобретателей и ученых, которые видят в ней один из путей к решению проблем экологии, экономии сырьевых ресурсов, снижения эксплуатационных затрат.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты