Характеристика системы впуска двигателя
Впускная система
Впускная система (другое наименование – система впуска) предназначена для впуска в двигатель необходимого количества воздуха и образования топливно-воздушной смеси. Термин «впускная система» появился с развитием конструкции двигателей внутреннего сгорания, особенно с появлением системы непосредственного впрыска топлива. Оборудование для питания двигателя воздухом перестало быть просто воздуховодом, а превратилось в отдельную систему.
В своей работе система впуска взаимодействует со многими системами двигателя, в том числе с системой впрыска, системой рециркуляции отработавших газов, системой улавливания паров бензина, вакуумным усилителем тормозов. Взаимодействие перечисленных систем и еще ряда других систем обеспечивает система управления двигателем.
Для улучшения наполнения цилиндров воздухом, повышения мощности в конструкции системы впуска современных бензиновых и дизелных двигателей используется турбонаддув.
Конструкция впускной системы включает воздухозаборник, воздушный фильтр, дроссельную заслонку, впускной коллектор. на отдельных конструкциях двигателей используются впускные заслонки. Все элементы впускной системы соединены патрубками.
Воздухозаборник обеспечивает забор воздуха из атмосферы и представляет собой патрубок определенной формы.
Воздушный фильтр служит для очистки воздуха от механических частиц. Фильтрующий элемент изготавливается из специальной бумаги и размещается в отдельном корпусе. Фильтрующий элемент воздушного фильтра является расходным материалом, т.е. имеет ограниченный срок службы. В зависимости от условий эксплуатации автомобиля срок службы фильтрующего элемента может изменяться.
Дроссельная заслонка регулирует величину поступающего воздуха в соответствии с величиной впрыскиваемого топлива. На современных двигателях дроссельная заслонка приводится в действие с помощью электродвигателя и не имеет механической связи с педалью газа.
Впускной коллектор распределяет поток воздуха по цилиндрам двигателя и придает ему необходимое движение. Разряжение, возникаемое во впускном коллекторе используется в работе вакуумного усилителя тормозов, а также для привода впускных заслонок.
На двигателях с непосредственным впрыском топлива в дополнение к дроссельной заслонке устанавливаются впускные заслонки. Они обеспечивают процесс смесеобразования за счет разделения воздуха на два впускных канала. Один канал перекрывает заслонка, через другой – воздух проходит безпрепятственно. Впускные заслонки установлены на общем валу, который поворачивается с помощью вакуумного или электрического привода.
Работу впускной системы обеспечивает система управления двигателем. Конструктивные элементы системы управления двигателем, которые используются в работе системы впуска, можно разделить на три группы: входные датчики, блок управления иисполнительные устройства.
К примеру, впускная система двигателя с непосредственным впрыском топлива имеет следующие входные датчики: расходомер воздуха, температуры воздуха на впуске, положения дроссельной заслонки, давления во впускном коллекторе, положения впускной заслонки, положения клапана рециркуляции, давления в магистрали вакуумного усилителя тормозов.
Расходомер воздуха и датчик температуры воздуха на впуске служат для определения нагрузки на двигатель. На некоторых моделях двигателей расходомер воздуха не устанавливается. Его функции выполняет датчик давления во впускном коллекторе. При совместной установке расходомер воздуха и датчик давления во впускном коллекторе дублируют друг друга. Датчик давления во впускном коллекторе также используется в работе системы рециркуляции отработавших газов для расчета количества перепускаемых газов. Величина нагрузки двигателя определяется с помощью датчика температуры воздуха на впуске и дополнительного датчика атмосферного давления. Остальные датчики обеспечивают работу соответствующих систем.
Работой впускной системы управляют следующие исполнительные устройства:
- блок управления дроссельной заслонкой;
- электродвигатель привода впускных заслонок или клапан управления вакуумным приводом заслонок (на двигателе с непосредственным впрыском топлива);
- запорный клапан системы улавливания паров бензина;
- электромагнитный клапан системы рециркуляции отработавших газов.
Исполнительные устройства активирует блок управления двигателем.
Принцип работы впускной системы
Работа впускной системы основана на разности давлений в цилиндре двигателя и атмосфере, возникающей на такте впуска. Объем поступающего воздуха при этом пропорционален объему цилиндра. Величина поступающего воздуха регулируется положением дроссельной заслонки в зависмости от режима работы двигателя.
На двигателях с непосредственным впрыском топлива в дополнение к дроссельной заслонке работают впускные заслонки. Совместная работа дроссельной и впускных заслонок обеспечивает несколько видов смесеобразования:
- послойное смесеобразование;
- бедное гомогенное смесеобразование;
- стехиометрическое гомогенное смесеобразование.
Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. При послойном смесеобразовании дроссельная заслонка большую часть времени открыта полностью. Заслонка прикрывается только для обеспечения разряжения, необходимого в работе системы улавливания паров бензина (продувка адсорбера), системы рециркуляции отработавших газов (перепуск отработавших газов во впускной коллектор) и вакуумного усилителя тормозов (создание необходимого разрежения). Впускные заслонки закрыты.
Стехиометрическое (легковоспламеняемое) гомогенное (однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. Дроссельная заслонка открывается в соответствии с требуемым крутящим моментом. Впускные заслонки открыты.
На бедной гомогенной смеси двигатель работает в промежуточных режимах. Дроссельная заслонка открывается также в соответствии с требуемым крутящим моментом. Впускные заслонки закрыты.
Немного о впуске и системах изменения геометрии.
Приветствую!
Давно не писал, загрузка колоссальная, но решил развеяться. Вас, побаловать.
Очередной перевод, на скорую руку.
Daniele Bortoluzzi
planetsoarer.com/resonator/ResonatorsAcoustic.htm
Исследование акустических резонаторов впускных коллекторов ДВС гидродинамическим способом.
Процессы впуска сильно влияют на производительность двигателя, так как генерируемая мощность зависит от способности наполнения цилиндров массой воздуха. По этой причине, особенно в области высоко форсированных двигателей, необходимо обеспечит лучшее наполнение во время такта всасывания. Соотношением между фактическим и идеальным наполнением газовых масс определяется объемный коэффициент полезного действия: мощность двигателя, с точки зрения полученного крутящего момента, пропорциональна этому качеству наполнения.
Объемный КПД двигателя зависит от квазистатических явлений таких, как вязкостные потери и нагрев заряда, а так же от протекающих динамических явлений, связанных с пульсирующим характером потока, определенные «акустическими явлениями». Акустические явления становятся все более и более важными с ростом рабочих оборотов, как в высокоскоростных двигателях (например, F1).
Акустический явления могут улучшить или ухудшить наполнение цилиндра в соответствии с оборотами двигателя, поэтому важно оптимизировать их с геометрией впускного коллектора или во всем рабочем интервале переменной геометрии впускного коллектора (см. рисунок). Системы впуска с изменяемой геометрией, как правило, реализуется изменением длины воздуховода различными способами (непрерывным или дискретным). Решением является модификация акустического поведения системы впуска путем добавления резонаторов Гельмгольца к патрубкам, изменяя их характеристики в соответствии с текущей частоты вращения двигателя, с тем чтобы максимизировать наполнения цилиндров на различных скоростях.
Резонатор Гельмгольца образован объемом и каналом, который соединены. Он ведет себя как система, состоящая по пневматической пружиной (полость) и массой (газ внутри воздуховода): следовательно, она имеет собственную частоту колебаний, которое может быть вычислено следующим образом:
где с скорость звука. Резонаторы используются в области акустики, чтобы управлять звуковым давлением (помещений, акустических систем, машин) или в каналах (отопления, вентиляции, выхлопных систем). Их эффективность достаточно доказана. Предложенное использование акустических возможностей препятствовать процессу переноса массы, то есть, изменения собственных частот системы впуска в соответствии с текущей частотой движения поршня.
Система впуска без какого-либо резонатора, состоящий из цилиндра (пружины) и впускного канала (массы), можно рассматривать как резонатор Гельмгольца, чья резонансная частота задается уравнением выше (объем, это средний объем цилиндра, а длина должна быть скорректирована с учетом небольшой присоединенной массы газа вне канала). Оптимальное заполнение получается когда собственная частота примерно вдвое превышает частоту поршня, и кривая крутящего момента показывает один пик.
Система впуска с резонаторами могут быть изучены с несколькими моделями, которые способны принимать во внимание различные динамических явлений, которые имеют место в коллекторах. Рассмотрены два метода:
-метод сосредоточения конечных элементов, который рассматривает поток в канале, как единую массу и газ в полости как пневматическую пружину ;
-численное моделирование с помощью конечных разностей кода.
Согласование между методом сосредоточения конечных элементов (очень эффективен и легко обрабатываться) и численного моделирования, с точки зрения возможностей резонатора, текущей системой впуска, дает хороший результат. Вследствие этого, можно добавить один или несколько резонаторов в различных местах и предсказать поведение наполнения цилиндра в разных оборотах двигателя.
Lv определяется как отношение между объемом, который поступил в цилиндр и объем цилиндра. Выше перечисленные модели показывают вклад акустических явлений в коэффициент наполнения. Модель с сосредоточения элементов обеспечивает функцию Lv, которая зависит от объема цилиндра, скорости звука, длинны, поперечные сечения, объема резонатора, скорости двигателя.
На следующем рисунке показан пример системы впуска с последовательными резонаторами, для одного цилиндра двигателя. Вся система впуска ведет себя как двойной акустический резонатора Гельмгольца, состоящий из двух каналов и двух объемов. На рисунке ниже показана эквивалентная система сосредоточения элементов .
Наличие второй пружины добавляет вторую собственную частоту, обе частоты можно рассчитать следующим образом:
где L 1 и L 2 представляют собой соотношение длины к площади двух каналов (соответственно, прикрепленый к цилиндру и открытый в атмосферу). С помощью двух резонансных частот кривая крутящего момента может показать два разных пика, с оптимальной скоростью поршня близкой к половине собственных частот. Следующие цифры показывают индекс наполнения на двух примерах с различной геометрией. В первом случае оптимальная скорость системы без резонатора (низкие значения объема резонатора, которые дают высокие значения Rv ) разделяется на две различные скорости за счет увеличения его объема (уменьшающихся значений Rv ). Во втором случае, наличие резонатора способствует наполнению только на высоких скоростях, ухудшая его при низких: непрерывное регулирование объема резонатора в зависимости от оборотов в минуту было бы лучшим вариантом
Все геометрические конфигурации могут быть проверены с помощью этого метода и с возможностью изменения в параметрическом способом для любой характеристики системы (объемы, длины, сечения), чтобы найти наилучшее решение, которое может быть изменять объем или сечения, длинну канала резонатора. Целю может быть улучшить наполнения (т.е. крутящего момента) на определенных оборотах в минуту (например, для подавления некоторых отрицательных волновых эффектов) или в интервале оборотов двигателя (для улучшения всей кривой момента).
На приведенных ниже рисунках показан пример системы впуска с боковым ответвлением резонатора и с двойным резонатором (состоящий из последовательного и бокового ответвления). Лучшее решение должно быть найдено в соответствии с требованиями, конечно же, необходимо также учитывать доступность применения.
На графике показаны результаты некоторого численного моделирования системы впуска с резонатором. Показывает степень наполнения Lv по оборотам двигателя, для трех значений объема резонатора. Наличие резонатора положителен на высоких скоростях, и эффект возрастает с увеличением его объема.
На следующих рисунках показано поле скоростей системы впуска без и с последовательным резонатором, при скорости 4000 оборотов в минуту. Очевидно, что в присутствии резонатора поток лучше следует за движением поршня, в то время как в системе без резонатора поток движется с отставанием, что ограничивает массоперенос внутрь цилиндра.
Система холодного впуска для эффективной работы двигателя
Система холодного впуска – это современный и весьма популярный вид моторного тюнинга, который способен, квалифицировано уменьшить степень нагрева воздуха входящего в двигатель, тем самым повышая эффективность наполнение им цилиндров. То есть чтобы при нажатии на педаль акселератора происходила лучшая отдача, воздух с которым работает двигатель, должен быть максимально холоден. Именно эту функцию призвана выполнять система впуска воздуха.
Понятие системы холодного впуска и его схема действия
В любом тюнинге мотора и просто его обслуживании, топливно-воздушная смесь – одна из главных составляющих, от которой зависят характеристики мощности. Однако штатные воздушные фильтры комплектуются фильтрующим элементом из невероятно плотного материала, а его конструкция не может обеспечить достаточное количество потоков данной смеси, направленных в цилиндры. Так вот система впуска холодного воздуха представляет собой фильтр с нулевым сопротивлением (так называемый «нулевик»), имеющим микроскопические отверстия, которые позволяют прогонять значительно больший объем.
В целом, доработка впускной системы проводится в двух направлениях: увеличение объема входящего воздуха и снижение сопротивления воздуху на впуске. Для того чтобы добиться данных характеристик доработке подвергаются: патрубок, впускной коллектор, воздушный фильтр и ресивер. Эффект увеличения мощности автомобиля (лошадиных сил) зависит от того, насколько стандартный фильтр стеснял двигатель, поскольку именно штатный фильтр является самым большим ограничением в подаче воздуха в двигатель внутреннего сгорания.
Фильтрующего элемент «нулевик» выпускается двух типов:
- хлопковый нетканый материал, уложенный гофром и армированный металлической сеткой, используется на автомобилях, передвигающихся по асфальтовым покрытиям;
- мелкоячеистый полиуретан (иначе – поролоновые фильтры), в которых сетка меньше сопротивляется всасыванию, а непосредственно сам элемент гораздо лучше задерживает пыль и имеет большую поверхность очистки (данный тип чаще используется на автомобилях для гонок по внедорожным трассам, например система холодного впуска pro sport с более агрессивной подачей воздуха двигателю).
Как правило, данный элемент располагают вне подкапотного пространства автомобиля, в зоне с более холодным воздухом, например, под крылом, вместо фары, в бампере или за решеткой. С двигателем фильтр соединятся патрубком. Это более целесообразно, поскольку для работы двигателя берется не горячий воздух, что существенно снижает его функционал, а холодный плотный непосредственно из атмосферы.
Фильтр нулевого сопротивления представляет собой карбоновый или алюминиевый (это зависит от компании-производителя) конус. Он плотно насажен на фильтрующий компонент и экранирует теплый воздух, поступающий от двигателя внутреннего сгорания. Безусловно, конструкция обеспечивает не нулевое, но весьма сниженное сопротивление воздушному потоку. И избранная для фильтра форма конуса, и конфигурация самого фильтрующего компонента в процессе работы создают, вспомогательные завихрения, которые способствуют более результативному наполнению цилиндров двигателя.
Каждый водитель знает насколько сильно давление встречного воздуха – для этого достаточно высунуть в окно руку. Чем поток холоднее и плотнее, тем лучше сгорает топливо, с которым он вступает во взаимодействие. Именно эта сила используется системой холодного впуска для увеличения мощности двигателя и экономии расхода транспортным средством топлива.
Достоинства и недостатки системы
Итак, один из способов добавить несколько лошадиных сил автомобилю – это установить фильтры нулевого сопротивления. Но как и любая система, система впуска холодного воздуха имеет свои преимущества и несовершенства.
Преимущества системы холодного впуска:
- увеличение мощности двигателя и его крутящего момента;
- оперативный запуск турбокомпрессора;
- увеличивает чувствительность педали акселератора;
- существенное снижение расхода топлива;
- снижается вероятность получения детонации;
- двигатель работает плавно и мягко;
- дополнительный шум от фильтра нулевого сопротивления;
- возможность гидроудара при неординарных вариантах монтажа устройства и эксплуатации автомобиля;
- трудоемкость в процессе установки;
- необходимость удалять или изменять месторасположения некоторые заводские крепления, датчики и блоки;
- некоторые модели фильтров нулевого сопротивления недостаточно хорошо очищают воздух, следовательно, существует вероятность порчи двигателя.
Виды систем холодного впуска
Тюнинг-фирмы выпускают комплекты холодного впуска различных цветов, материалов, размеров, входных диаметров и форм. Выбор этого аксессуара на сегодняшний день зависит только от личных предпочтений владельца транспортного средства. Они могут быть универсальными или предназначенными для определенных моделей машин. Рассмотрим некоторые из них:
1. Система Cold Air Intake (CAI). Зачастую характеризуется большим сопротивлением, поскольку комплектуется бумажным фильтром и разработками изготовителя для снижения уровня шума. Забор воздуха осуществляется из горячего двигательного отсека. Причем высокая температура потока формируется не только забором воздуха из подкапотного пространства, но и пластиковыми элементами впускного тракта, инсталлированными вплотную к двигателю.
2. Система APR Carbonio выполнена из карбона. Этот материал выпускается на основе авиационных технологий из углеродистого волокна. Системы из карбона обладают рядом исключительных характеристик, которые на порядок выше заводских аналогов. Также данная конструкция имеет еще одну технологическую особенность: во впускном коллекторе создается дополнительное давление от поступающего потока воздуха. Как можно ближе к этому участку, у самой передней кромки капота располагается элемент низкого сопротивления. Число изгибов и поворотов впускного тракта снижено, что так же способствует оптимизации и увеличению скорости движения воздуха, поскольку все входящие потоки направляются непосредственно в фильтр.
3. Холодный впуск K&N отличается от других систем короткой трубой. Данные устройства предназначены для категоричного сокращения ограничений в заборном тракте. Поток выпрямлен, что позволяет автомобилю легче всасывать воздух и обеспечивает высокую полезную мощность оборотов двигателя. Система устанавливается на автомобиль достаточно легко. Корпус фильтра закрыт, а это увеличивает защиту устройства от грязи и пыли. Конус фильтра довольно большой (152 мм), что делает его не слишком эффективным, но для увеличения притока воздуха можно снять верхнюю крышку. Комплектуется моющимися фильтрами. В отличие от стандартных бумажных фильтров обладает многослойной поверхностью с пропиткой и улучшенной конфигурацией элемента. Пропускает на 50 процентов больше воздуха, чем обычные стандартные фильтры, без снижения качества фильтровки.
4. Система Takeda сухого типа от производителя aFe Power (США) разработана и выпущена одна из первых. Выпускная рама выполнена из двух частей. Система оптимальна для дождливого периода, поскольку можно трансформировать выпускной фильтр из длинного в короткий, перенося устройство под капот. А в сухой и жаркий период можно удлинить и переместить, например, под крыло, облегчая забор свежего воздуха. Фильтр не требует обработки маслом, очищается водой с небольшим количеством моющего средства. Основным недостатком считается повышенная угроза гидроудара в дождливую погоду.
5. Высокопроизводительные системы впуска воздуха AEM (США) разрабатываются непосредственно для каждой конкретной модели машин и определенного двигателя с целью получить максимальную отдачу во всем диапазоне оборотов. Впускной патрубок изготавливается из алюминия и покрыт специфическим керамическим теплоотводным напылением. В зависимости от типа двигателя внутреннего сгорания и конфигураций модели формы системы холодного впуска могут существенно изменяться. Во всех модификациях AEM применяются инновационные износостойкие синтетические сухие фильтры, не требующие масляной пропитки. Впускные фильтры этой компании производятся для большинства японских, американских и европейских автомобилей. Производитель дает пожизненную гарантию.
Заключение
Установка данного оборудования требует высокой квалификации специалиста и занимает достаточно много времени, поскольку требует поиска и выбора участка в подкапотном пространстве максимально удаленного от источников тепла на конкретном автомобиле, дабы полностью исключить попадания в цилиндры горячего воздуха.
К тому же необходимо подчеркнуть, что установка «нулевика» имеет смысл только тогда, когда весь двигатель подвергся доработке. Все знают, что чудес не бывает, поэтому снизить сопротивление потоку можно только за счет увеличения проходных отверстий, одним словом, только ухудшив качество фильтрации. Таким образом, при установке фильтра нулевого сопротивления на стандартный мотор игра и вовсе не стоит свеч. Согласитесь, глупо получать теоретическую прибавку мощности за счет снижения ресурса мотора авто.
Устройство автомобилей
Системы пуска двигателя
Система пуска обеспечивает первоначальное проворачивание коленчатого вала при пуске двигателя, поскольку сам двигатель в неподвижном состоянии не создает вращающего момента, и без внешнего источника энергии не запустится.
Для того, чтобы вдохнуть в двигатель жизнь, его коленчатому валу нужно сообщить определенную начальную (пусковую) частоту вращения, после чего начинают протекать газообменные и термодинамические процессы в цилиндрах, а также функционировать основные системы, обеспечивающие работу двигателя – питания, зажигания, смазки. В цилиндры двигателя начинает поступать горючая смесь (у дизелей – чистый воздух), в нужный момент на свечи зажигания подается искрообразующий электрический импульс, либо впрыскивается порция топлива (у дизелей), а система смазки обеспечивает снижение сил трения при работе механизмов двигателя – двигатель запускается и начинает работать самостоятельно.
При первоначальном проворачивании коленчатого вала системе пуска необходимо преодолеть моменты сопротивления следующих составляющих:
- момент сил трения, возникающих между поверхностями сопряженных деталей двигателя и во вспомогательных механизмах, имеющих привод от коленчатого вала;
- момент инерционных сил, которые появляются в процессе разгона двигателя, создаваемых движущимися деталями. Основную долю момента инерционных сил составляет момент инерции маховика;
- момент сопротивления тепловых циклов горючей смеси, определяемый затратами энергии на расширение и сжатие заряда в цилиндрах двигателя. Эта составляющая зависит от величины компрессии в цилиндрах, степени сжатия и рабочего объема двигателя.
Суммарный момент сопротивления зависит, также, от типа и мощности двигателя, а также от его температуры и технического состояния. Так, с понижением температуры увеличивается вязкость масла смазывающей системы, что приводит к увеличению момента сил трения.
Система пуска должна обладать достаточной мощностью, чтобы преодолеть моменты сопротивления, заставив вращаться коленчатый вал с частотой, необходимой для запуска двигателя. За все время существования двигателей внутреннего сгорания изобретатели и конструкторы разработали и испробовали на практике разнообразные способы пуска двигателей. И в современных двигателях можно встретить разные по принципу действия и конструкции пусковые устройства. При этом используемый в двигателе способ пуска во многом определяется назначением и характером работы машины, а также условиями, в которых она эксплуатируется.
Классификация систем пуска двигателя
Поршневые двигатели внутреннего сгорания можно запустить, раскручивая коленчатый вал различными способами:
Мускульный пуск
Мускульный пуск осуществляется вручную при помощи пусковой рукоятки (или другого аналогичного устройства), либо проворачиванием вывешенного ведущего колеса, когда второе ведущее колесо заторможено (опирается на дорогу и не вращается благодаря дифференциалу).
В данном способе источником энергии для проворачивания коленчатого вала двигателя является мускульная сила человека.
Мускульный пуск применяется на современных автомобилях только в случае отказа штатной системы пуска. Он достаточно опасен с точки зрения травмирования человека, поэтому требует особой осторожности при применении. Запускать дизельный двигатель при помощи мускульного пуска значительно сложнее и опаснее, чем двигатель с принудительным воспламенением из-за высокой степени сжатия в цилиндрах.
В последние годы на легковых автомобилях производителями не предусматриваются штатные устройства для мускульного пуска двигателя.
Пуск методом буксировки
Методом буксировки двигатель можно запустить при помощи другого транспортного средства либо с использованием мускульной силы группы людей или животных (лошадей, мулов и т. п.).
Буксированием автомобиль разгоняется до некоторой скорости, после чего водитель включает передачу КПП (обычно 3-ю) и плавно включает сцепление, заставляя коленчатый вал крутиться.
Данный метод пуска двигателя не применим для автомобилей, оборудованных автоматической коробкой передач.
Пуск от электродвигателя
Пуск от электрического двигателя постоянного тока — стартера, использующего для своей работы энергию аккумуляторной батареи автомобиля. Этот способ наиболее удобен и практичен, поэтому применяется в подавляющем большинстве систем пуска современных автомобильных двигателей.
Стартер конструктивно объединяет электродвигатель постоянного тока, привод с обгонной муфтой, соединяющий стартер с венцом маховика, и электрическое реле включения электродвигателя.
Пуск с помощью вспомогательного двигателя — «пускача»
Пуск основного двигателя от вспомогательного двигателя внутреннего сгорания малой мощности, который запускается от других источников энергии, в том числе – вручную. Этот способ нередко применяется в тракторных двигателях, поскольку позволяет легко запустить двигатель большой мощности с высокой степенью сжатия, свойственной дизелям, мало зависит от степени заряда аккумуляторной батареи, поэтому применим в любых условиях, в том числе вдали от населенных пунктов.
В качестве пусковых двигателей обычно используют небольшие карбюраторные двигатели, называемые «пускачами».
Пневматический пуск
Пневматический пуск осуществляется с использованием энергии сжатого воздуха, который накапливается в специальных баллонах при работе основного двигателя. Этот способ пуска ДВС в автомобильном транспорте применения не нашел; его чаще используют для запуска судовых и тепловозных двигателей, а также дизелей тяжелой бронетанковой техники.
Инерционный пуск
Инерционный пуск с использованием энергии вращающегося маховика, накопившего энергию во время работы двигателя — может использоваться для запуска двигателя после кратковременной остановки. Впрочем, известны инерционные системы пуска, в которых тяжелый маховик первоначально раскручивался вручную, после чего его энергия использовалась для пуска двигателя и после длительной стоянки.
К инерционному пуску можно отнести пуск двигателя, заглохшего во время движения транспортного средства – включение какой-либо передачи КПП при плавном включении сцепления позволяет раскрутить коленчатый вал от вращающихся колес. Такой способ пуска двигателя иногда еще называют ротационным.
Непосредственный пуск
Непосредственный пуск (Direct Start) – перспективный способ пуска двигателя внутреннего сгорания без применения внешних источников механической энергии, предложенный известной фирмой Bosch.
Оригинальность этого способа пуска заключается в том, что с помощью бортового компьютера определяется, какой из цилиндров двигателя наиболее подходит для выполнения такта рабочего хода (поршень находится чуть за пределами верхней мертвой точки), после чего в него подается и воспламеняется небольшая порция горючей смеси – двигатель начинает работать.
По ряду причин этот способ можно использовать в двигателях с числом цилиндров не менее четырех.
Работы над воплощением этой идеи в настоящее время ведутся, и вполне возможно, электрическую систему пуска заменит более эффективный и удобный непосредственный пуск.
Пиротехнический пуск
Еще один редкий способ запуска двигателя. Пиротехнический пуск — способ с использованием пиротехнических веществ, например, пороха, не получивший применения на автомобилях. Этот способ технологически похож на пневматический пуск, и отличается тем, что не требует запаса сжатого воздуха — давление пуска обеспечивают пороховые газы, образующиеся при сгорании пиропатрона, который можно воспламенить электрической искрой или ударом обыкновенного молотка по капселю.
В настоящее время пиротехнический пуск используется на некоторых моделях снегоходов и моторных судовых шлюпок, поскольку удобен тем, что в некоторых условиях для пуска двигателя другие источники энергии недоступны.
Основное требование, предъявляемое к системам пуска двигателя – обеспечение достаточной частоты вращения коленчатого вала, для чего необходим крутящий момент определенной величины. При этом система пуска должна надежно функционировать в любых условиях эксплуатации двигателя внутреннего сгорания, и минимально расходовать запасы собственных источников энергии транспортного средства.
Вспомогательные устройства пуска двигателя
К системе пуска относятся и устройства, облегчающие пуск холодного двигателя, особенно при низких температурах окружающей среды. Такие устройства в момент пуска холодного двигателя позволяют улучшить искрообразование (в двигателях с принудительным воспламенением смеси), обеспечить подачу в цилиндры горючей смеси необходимого качества и количества, выполняют продувку цилиндров, а также предварительный подогрев горючей смеси, смазочного материала, охлаждающей жидкости и деталей основных механизмов двигателя.
Особенно затруднен пуск холодного двигателя, оборудованного газовой и дизельной системой питания в зимнее время. Здесь, наряду с перечисленными выше причинами, имеют место и специфические трудности пуска, обусловленные характеристиками используемого топлива и типом системы питания.
Так, газовое топливо при выходе из баллонов нуждается в подогреве (газообразное) или испарении (жидкий газ). Для того, чтобы подогреватель или испаритель начали функционировать, необходимо изначально запустить и прогреть двигатель, поскольку в подогревателе используются отработавшие газы, а в испарителе — горячая жидкость системы охлаждения. Очевидно, в холодном состоянии системы двигателя не могут обеспечить нормальный подогрев газа перед подачей его в редуктор и смеситель. Поэтому пуск двигателя в газобаллонных автомобилях обычно осуществляется на бензине, а после некоторого прогрева двигателя переключают систему питания на газообразное топливо.
Для дизелей дополнительной причиной затруднения пуска является холодный воздух. Поскольку дизельный двигатель использует для воспламенения горючей смеси сильное сжатие воздуха, то очевидно, что холодный воздух при одной и той же степени сжатия прогреется меньше, чем теплый воздух, и воспламенение смеси будет затруднено или даже невозможно. Кроме того, высокая степень сжатия в дизелях, характеризующаяся значительным компрессионным сопротивлением, создает дополнительное препятствие работе системы пуска (стартера или пускового двигателя), и при запуске трудно раскрутить коленчатый вал до нужной частоты.
Для устранения описанных причин затрудненного пуска дизелей применяются такие конструкторские решения, как предварительный подогрев воздуха во впускном трубопроводе с помощью специальных электронагревательных свечей, а также декомпрессоры — устройства, снижающие компрессию двигателя в момент раскручивания коленчатого вала перед пуском двигателя. Декомпрессоры обычно открывают клапана (впускной, выпускной или оба), что облегчает стартеру раскручивание коленчатого вала до нужной частоты, а после отключения декомпрессора двигатель запускается.
Кроме того, декомпрессор может быть использован для аварийной остановки двигателя в случае необходимости — снижение компрессии в цилиндрах исключает возгорание горючей смеси, и дизель глохнет.
Конструктивно декомпрессор представляет собой систему тяг и рычагов с ручным или электромагнитным приводом, воздействующих на штанги толкателей и открывающих клапаны ГРМ.
В условиях очень низких температур для облегчения пуска двигателя нередко применяют эфиросодержащие жидкости, впрыскиваемые в небольшом количестве во впускной тракт системы питания.
В холодное время года наиболее удобным и надежным средством облегчения пуска двигателей являются предпусковые подогреватели.