Характеристики многоскоростного асинхронного двигателя - Автомобильный журнал
Arskama.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристики многоскоростного асинхронного двигателя

Многоскоростные электродвигатели и их использование — назначение и особенности, определение мощности при разных скоростях вращения

Многоскоростные электродвигатели — асинхронные двигатели с несколькими ступенями частоты вращения, предназначены для привода механизмов, требующих ступенчатого регулирования частоты вращения.

Многоскоростные электродвигатели — электродвигатели специальной конструкции. Они имеют особую обмотку статора и нормальный короткозамкнутый ротор.

В зависимости от отношения полюсов, сложности схем и года выпуска многоскоростных электродвигателей, их статоры выполнены в четырех вариантах:

независимыми друг от друга односкоростнымн обмотками на две, три, даже четыре частоты вращения;

с одной или двумя полюсно-переключаемыми обмотками, в первом случае двухскоростными, а во втором — четырехскоростными;

с наличием трех частот вращения электродвигателя, одна обмотка изготовлена полюсно-переключаемой — двухскоростной, а вторая — односкоростиой, независимой — на любое число полюсов;

с одной полюсно-переключаемой обмоткой на три или четыре частоты вращения.

Электродвигатели с самостоятельными обмотками имеют плохое использование и заполнение пазов из-за наличия большого количества проводов и прокладок, что значительно снижает мощность по ступеням скоростей.
Наличие в статоре двух полюсно-переключаемых обмоток и особенно одной на три или четыре частоты вращения улучшает заполнение пазов и позволяет более рационально использовать сердечник статора, в результате чего повышаются мощности электродвигателя.

По сложности выполнения схем многоскоростные электродвигатели подразделяются на две части: с отношением полюсов равным 2/1 и — не равными 2/1. К первым относятся электродвигатели с частотой вращения — 1500/3000 об/мин или 2р = 4/2, 750/1500 об/мин или 2р = 8/4, 500/1000 об/мин или 2р = 12/6 и т. д. а ко вторым — 1000/1500 об/мин или 2р = 6/4, 750/1000 об/мин или 2р=8/6, 1000/3000 об/мин или 2р = 6/2, 750/3000 об/мин или 2р = 8/2, 600/3000 об/мин или 2р = 10/2, 375/1500 об/мин или 2р = 16/4 и т. д.

В зависимости от выбора схемы полюсно-переключаемой обмотки, при разном числе полюсов, электродвигатель может быть с постоянной мощностью или с постоянным моментом.

У электродвигателей с полюсно-переключаемой обмоткой и постоянной мощностью число витков в фазах при обеих числах полюсов будет одинаково или близко друг к другу, значит их токи и мощности будут одинаковы или близки. Вращающие моменты их будут разные, зависящие от числа оборотов.

У электродвигателей с постоянным моментом при меньшем числе полюсов катушечные группы, разделенные на две части в каждой фазе, включаются в двойной треугольник или двойную звезду параллельно, в результате чего число витков в фазе уменьшается, а сечение проводов, ток и мощность увеличиваются в два раза. При переключении с больших на меньшее число полюсов по схеме звезда/треугольник число витков уменьшается, а ток и мощность увеличатся в 1,73 раза. Значит при большей мощности и больших оборотах, а также при меньшей мощности и меньших оборотах вращающие моменты будут одинаковыми.

Наиболее простым способом получения двух разных чисел пар полюсов является устройство на статоре асинхронного двигателя двух независимых обмоток. Электротехнической промышленностью выпускаются такие двигатели с синхронными скоростями вращения 1000/1500 об/мин.

Существует, однако, ряд схем переключения проводников обмотки статора, при которых одна и та же обмотка может создать различные числа полюсов. Простое и широко распространенное переключение такого рода показано на рис. 1, а и б. Катушки статора, включенные последовательно, образуют две пары полюсов (рис. 1, а). Те же катушки, включенные в две параллельные цепи, как это показано на рис. 1, б, образуют одну пару полюсов.

Промышленность выпускает многоскоростные однообмоточные электродвигатели с последовательно-параллельным переключением и с отношением скоростей 1:2 с синхронными скоростями вращения 500/1000, 750/1500, 1500/3000 об/мин.

Описанный выше способ переключения не является единственным. На рис. 1, в приведена схема, образующая такое же число полюсов, как и схема, представленная на рис. 1, б.

Наибольшее распространение в промышленности получил, однако, первый способ последовательно-параллельного переключения , так как при таком переключении от обмотки статора может быть выведено меньше проводов, а следовательно, и переключатель может быть проще.

Рис. 1. Принцип переключения полюсов асинхронного двигателя.

Три фазовые обмотки могут быть включены в трехфазную сеть звездой или треугольником. На рис. 2, а и б показано широко распространенное переключение, при котором электродвигатель для получения меньшей скорости включается треугольником с последовательным соединением катушек, а для получения большей скорости — звездой с параллельным соединением катушек (так называемой двойной звездой).

Наряду с двухскоростными электропромышленность выпускает также трехскоростные асинхронные двигатели . В этом случае статор электродвигателя имеет две отдельные обмотки, одна из которых обеспечивает две скорости путем описанного выше переключения. Вторая обмотка, включаемая обычно в звезду, обеспечивает третью скорость.

При наличии на статоре электродвигателя двух независимых обмоток, каждая из которых допускает переключение полюсов, можно получить четырехскоростной электродвигатель. Числа полюсов подбирают при этом так, чтобы скорости вращения составили нужный ряд. Схема такого электродвигателя представлена на рис. 2, в.

Следует заметить, что вращающееся магнитное поле будет наводить в трех фазах неработающей обмотки три э. д. с, одинаковые по величине и сдвинутые по фазе на 120°. Геометрическая сумма этих электродвижущих сил, как известно из электротехники, равна нулю. Однако, вследствие неточной синусоидальности фазовых э. д. с. тока сети, сумма этих э. д. с. может быть отличной от нуля. В этом случае в замкнутой неработающей обмотке возникает ток, нагревающий эту обмотку.

В целях предотвращения этого явления схему переключения полюсов составляют таким образом, чтобы неработающая обмотка была разомкнута (рис. 12, в). Вследствие небольшой величины указанного выше тока у некоторых электродвигателей, разрыва замкнутого контура неработающей обмотки иногда не делают.

Выпускаются двухобмоточные трехскоростные двигатели , имеющие синхронные скорости вращения 1000/1500/3000 и 750/1500/3000 об/мин, и четырехскоростные двигатели, имеющие 500/750/1000/1500 об/мин. Двухскоростные двигатели имеют шесть, трехскоростные — девять и четырехскоростные — 12 выводов к переключателю полюсов.

Следует заметить, что существуют схемы двухскоростных двигателей, которые при одной обмотке позволяют получить скорости вращения, отношение которых не равно 1:2. Такие электродвигатели обеспечивают синхронные скорости вращения 750/3000, 1000/1500, 1000/3000 об/мин.

Путем использования специальных схем одной обмотки можно получить также три и четыре различных числа пар полюсов. Такие однообмоточные многоскоростные электродвигатели отличаются значительно меньшими габаритными размерами, чем двухобмоточные двигатели с теми же параметрами, что весьма важно для станкостроения.

Читать еще:  Чем тормозить двигателем или тормозами

Кроме того, у однообмоточных электродвигателей несколько выше энергетические показатели и меньше трудоемкость изготовления. Недостатком однообмоточных многоскоростных электродвигателей является наличие большего числа проводов, вводимых к переключателю.

Сложность переключателя определяется, однако, не столько числом выведенных наружу проводов, сколько числом одновременно осуществляемых переключений. В связи с этим были разработаны схемы, позволяющие при наличии одной обмотки получить три и четыре скорости при относительно простых переключателях.

Рис. 2. Схемы переключения полюсов асинхронного двигателя.

Такие электродвигатели выпускаются станкостроительной промышленностью при синхронных скоростях 1000/1500/3000, 750/1500/3000, 150/1000/1500, 750/1000/1500/3000, 500/750/1000/1500 об/мин.

Вращающий момент асинхронного двигателя может быть выражен известной формулой

где Iг — ток в цепи ротора; Ф — магнитный поток двигателя; ?2— угол сдвига фаз между векторами тока и э. д. с. ротора.

Рис. 3. Трехфазный многоскоростной электродвигатель с короткозамкнутым ротором.

Рассмотрим эту формулу применительно к вопросам регулирования скорости асинхронного двигателя.

Наибольшая продолжительно допустимая сила тока в роторе определяется допустимым нагревом и, следовательно, является примерно постоянной величиной. Если регулирование скорости ведется с постоянным магнитным потоком, то при всех скоростях двигателя наибольший длительно допустимый момент будет также величиной постоянной. Такое регулирование скорости называется регулированием с постоянным моментом.

Регулирование скорости изменением сопротивления в цепи ротора является регулированием с постоянным предельно допустимым моментом, так как магнитный поток машины при регулировании не изменяется.

Предельно допустимая полезная мощность на валу электродвигателя при меньшей скорости вращения (и, следовательно, большем числе полюсов) определяется выражением

где Iф1 — фазовый ток, предельно допустимый по условиям нагрева; Uф1 — фазовое напряжение статора при большем числе полюсов.

Предельно допустимая полезная мощность на валу электродвигателя при большей скорости вращения (и меньшем числе полюсов) где Iф2 — фазовый ток, предельно допустимый по условиям нагрева при второй схеме включения статора; Uф2— фазовое напряжение в этом случае.

При переходе от соединения треугольником к соединению звездой фазовое напряжение уменьшается в ?2 раза. Таким образом, при переключении со схемы а на схему б (рис. 2) получим отношение мощностей

Иначе говоря, мощность на меньшей скорости составляет 0,86 мощности на большей скорости вращения ротора. Имея в виду относительно небольшое изменение наибольшей длительно допустимой мощности на обеих скоростях, такое регулирование условно именуют регулированием при постоянной мощности.

Если при последовательном соединении половин каждой фазы воспользоваться соединением звездой, а затем переключить на соединение параллельной звездой (рис. 2, б), то получим

Таким образом, в данном случае имеет место регулирование скорости с постоянным моментом. У металлорежущих станков приводы главного движения требуют регулирования скорости с постоянной мощностью, а приводы подач — регулирования скорости с постоянным моментом.

Приведенные выше выкладки соотношения мощностей при высшей и низшей скоростях носят приближенный характер. Не была, например, учтена возможность повышения нагрузки на высоких скоростях вследствие белее интенсивного охлаждения обмоток; принятое равенство также очень приближенно. Так, для двигателя 4А имеем

В результате соотношение мощностей для этого двигателя P1/P2 = 0,71. Такие же примерно соотношения имеют место и для других двухскоростных двигателей.

Новые однообмоточные многоскоростные электродвигатели в зависимости от схемы переключения допускают регулирование скорости с постоянной мощностью и с постоянным моментом.

Небольшое число ступеней регулирования, которое может быть получено у асинхронных двигателей с переключением полюсов, обычно позволяет использовать такие двигатели на станках только при наличии специально сконструированных коробок скоростей.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Характеристики многоскоростного асинхронного двигателя

Этот способ используется для регулирования скорости многоскоростных АД с короткозамкнутым ротором. Возможность получения искусственных характеристик АД данным способом, и следовательно, регулирования его скорости, непосредственно следует из выражения для угловой скорости магнитного поля АД ω0 = 2 πf1/p. Изменение числа пар полюсов АД р производится за счет переключений в обмотке статора, при этом число пар полюсов короткозамкнутого ротора изменяется автоматически. Так как количество полюсов АД может быть равным только целому числу — 1, 2, 3 и т. д., то следовательно, данный способ обеспечивает только ступенчатое регулирование скорости. Двигатели, допускающие регулирование скорости этим способом, получили название многоскоростных. Изменение числа полюсов АД достигается, когда на статоре АД располагаются две (или больше) не связанные друг с другом обмотки, имеющие разное число пар полюсов р1 и р2. При подключении к сети одной обмотки, например с p1 парами полюсов, АД имеет синхронную скорость.

Вторая обмотка при этом обесточена. Для получения другой скорости отключается первая обмотка и подключается на сеть вторая обмотка с р2 парами полюсов, при этом синхронная скорость АД станет равной АД будет иметь уже другую механическую характеристику.

Наряду с такими АД, получившими название многообмоточных, широкое распространение получил другой тип многоскоростных АД, у которых изменение числа пар полюсов вращающегося магнитного поля достигается за счет изменения схемы соединения статорной обмотки АД. Для этого каждая фаза статора разделена на несколько одинаковых частей (чаще всего на две части) и имеет от них соответствующее число выводов.

Рассмотрим принцип получения различного числа пар полюсов при переключении частей обмотки статора на следующем упрощенном примере. На рис. 1 показана схема одной фазы статорной обмотки, которая состоит из двух одинаковых частей 1н—1к, 2н—2к, имеющих два проводника. Если секции соединены так, как это показано на рис. 4.9, а, и к обмотке статора подведен ток I, имеющий в данный момент времени направление, показанное стрелками, то образуется магнитное

Рис. 1. Изменение числа пар полюсов обмотки статора

поле с четырьмя полюсами, т. е. p = 2 (направление магнитных силовых линий определяем с помощью правила буравчика). Оставив направление тока тем же, изменим несколько схему соединения обмотки, подключив конец первой секции 1к к концу второй 2к (рис. 1б). Из рис. 1б следует, что в этом случае статорная обмотка образует магнитное поле с числом пар полюсов, вдвое меньшим по сравнению с полем рис. 1а. Уменьшение вдвое числа пар полюсов достигается и в схеме рис. 1в, где секции соединены параллельно (1н с 2к, 1к с 2н). В том и другом случае (рис. 1 б и в) уменьшение числа пар полюсов, и следовательно, увеличение скорости АД, достигается изменением направления тока на противоположное в одной из секций (в данном случае во второй). При этом диапазон изменения угловой скорости магнитного поля равен двум. Наиболее часто на практике встречаются две схемы переключения статорной обмотки многоскоростных АД: 1) с треугольника (Д) на двойную звезду (УУ); 2) со звезды (У) на двойную звезду (УУ).

Читать еще:  Бороскопия двигателя самолета что это

Рассмотрим схемы соединения статора ‘и механические характеристики АД для этих случаев.

Треугольник — двойная звезда. Для получения большего числа пар полюсов р^ секции каждой фазы статора включены в треугольник согласно, т. е. так, как это показано на рис. 2а, где А1н и A2н — начала соответственно первой и второй секций фазы A; А1к и A2к — их концы. Обозначения для выводов секций фаз В и С, схемы включения которых аналогичны схемам фазы A, опущены. Соединение секций по схеме рис.2 б, как отмечалось выше, вызовет уменьшение в 2 раза числа пар полюсов АД. Схема рис. 2б, получила название двойной звезды.

Для получения общего вида механических характеристик определим допустимую мощность АД при включении его статора по схемам рис. 2, а и б. Учитывая, что допустимый ток в секции обмотки статора I1доп = I1ном остается неизменным при переключении числа пар полюсов, допустимую первичную мощность определим:

для схемы треугольник (рис. 2, а)

для схемы двойная звезда (рис. 2, б)


Рис. 2. Соединение обмоток статора в треугольник (а), двойную звезду (б) и механические характеристики при схемах треугольник — двойная звезда (Д—УУ) (в)

Из полученных выражений следует, что при cos φ1д ≈ cos φ1уу допустимая мощность АД остается практически неизменной. Поэтому при увеличении вдвое числа пар полюсов АД и уменьшении тем самым вдвое синхронной скорости допустимый момент на валу АД увеличивается примерно в 2 раза. Механические характеристики АД для данного способа переключения обмоток показаны на рис. 2в. Они соответствуют регулированию скорости при постоянной мощности.

Звезда — двойная звезда. В этой схеме меньшей угловой скорости АД соответствует соединение обмоток статора, показанное на рис. 3а. Секции фаз статора.

Соединение обмоток статора в звезду (а) и механические характеристики двигателя при схемах звезда — двойная звезда (б) соединены в этой схеме также последовательно и согласно и образуют при подключении АД к сети систему р1. пар полюсов вращающегося магнитного поля, которой соответствует синхронная скорость ω01. Переключение на двойную звезду осуществляется по схеме на рис. 2б, при этом число пар полюсов станет p2 = p1/2. Получаемые механические характеристики такого двухскоростного АД изображены на рис. 3б,. В отличие от рассмотренной выше схемы переключения треугольник — двойная звезда, в которой регулирование скорости АД осуществляется при постоянной мощности нагрузки на его валу, в этой схеме изменение скорости может осуществляться при постоянном моменте нагрузки Мс. Это следует из рассмотрения выражений допустимой мощности АД, которая для схемы двойная звезда (рис. 4.10, б) определяется формулой (2), а для схемы звезда согласно рис. 3а формулой.

Из (2) и (3) видно, что допустимая мощность при переключении статорной обмотки на меньшее число пар полюсов (когда скорость АД увеличивается в 2 раза) возрастает также в 2 раза. Тем самым допустимые моменты при работе АД в обеих схемах включения примерно одинаковы и характеристики имеют показанный на рис. 3б вид.

Помимо рассмотренных двухскоростных АД применяются также трех- и четырехскоростные АД. Первые из них помимо переключаемой обмотки статора, выполняемой аналогично рассмотренной выше, имеют также и одну непереключаемую обмотку. Четырехскоростные АД с различным числом пар полюсов р1, р 2, p3, p4 позволяют получить четыре различные механические характеристики.

Рассматриваемый способ регулирования скорости характеризуется рядом положительных показателей, что определяет широкое его применение в регулируемом электроприводе переменного тока. К ним в первую очередь следует отнести экономичность регулирования, так как регулирование скорости изменением числа пар полюсов не сопровождается выделением в роторной цепи больших потерь энергии скольжения, вызывающих излишний нагрев АД и ухудшающих его КПД.

Из рис. 2в и 3б видно, что механические характеристики многоскоростных асинхронных электродвигателей отличаются хорошей жесткостью и достаточной перегрузочной способностью.

рис. 4: Cхема управления двухскоростным АД с короткозамкнутым ротором.

Недостатком этого способа является ступенчатость изменения скорости двигателя и относительно небольшой диапазон ее регулирования, не превышающий обычно 6—8.

На рис. 4 показана практическая схема управления двухскоростным АД с короткозамкнутым ротором. Схема обеспечивает две скорости АД путем соединения обмотки статора в треугольник или двойную звезду, а также его реверсирование. Она состоит из контакторов большой КМ1 и малой КМ2 скорости, линейных контакторов направления вращения АД «Вперед» КМ3 и «Назад» КМ4, блокировочного реле KV и кнопок управления SB3, SB1, SB2, SB4, SB5. Защита электропривода осуществляется тепловыми реле KK1 и КК2 и предохранителями FA. Для пуска АД, например, на низкую скорость нажимается кнопка SB4, после чего срабатывает контактор КМ2 и реле KV. Статор АД оказывается включенным по схеме треугольник, а реле KV, замкнув свои контакты в цепях аппаратов КМЗ и КМ4, подготавливают двигатель к подключению к сети. Далее нажатие кнопки SB1 или SB2 приводит к включению АД соответственно в направлении «Вперед» или «Назад».

После разбега АД до низкой скорости может быть осуществлен его разгон до высокой скорости. Для этого должна быть нажата кнопка SB5, что приведет к отключению контактора КМ2 и включению контактора KM1 и пересоединению в результате этого обмотки статора со схемы треугольник на схему двойная звезда.

Остановка АД производится нажатием кнопки SB3, после чего он отключается от сети и схема возвращается в исходное положение.

Применение двухцепных кнопок в схеме позволяет осуществить блокировку от одновременного срабатывания контакторов КМ1 и КМ2, КМЗ и КМ4. Этой же цели служат включенные в цепи катушек этих контакторов размыкающие блокировочные контакты КМ1, КМ2, КМЗ, КМ4.

Читать еще:  Автозапуск двигатель заводится и сразу глохнет

4.4.Электромеханические характеристики многоскоростных асинхронных двигателей

Поскольку скорость вращения электромагнитного поля статора, как это следует из (4.3), зависит от числа пар полюсов двигателя рП, то имеются специальные модификации асинхронных короткозамкнутых двигателей, позволяющие изменять число пар полюсов машины и тем самым получать две или более (3 и 4) рабочие скорости двигателя. Конструктивно изменение числа пар полюсов может быть достигнуто двумя способами. При первом в пазы статора укладываются две или три независимые обмотки с различными значениями рП. При этом значительно увеличиваются габариты двигателей, но возможно получение любого соотношения числа пар полюсов.

При другом способе используется для получения различного числа пар полюсов одна и та же обмотка, а изменениерП достигается переключением секций этой обмотки. Наибольшее распространение получили две схемы обмоток: звезда (Y) – двойная звезда (Y-Y) и треугольник (∆) – двойная звезда.

Рассмотрим схему звезда – двойная звезда (см.рис.4.20). В этой схеме каждая из фазных обмоток состоит из двух секций, которые могут включаться параллельно или последовательно. При параллельном соединении напряжение подводится к средним точкам обмоток, а начала обмоток замыкаются между собой. Образуются две параллельно включенные системы обмоток, соединенные в двойную звезду (Y-Y). Такое соединение соответствует меньшему числу пар полюсов рП. Этой схеме соединения отвечает механическая характеристика с индексом Y-Y на рис.4.20б.

Рис.4.20. Схема (а) и механические характеристики (б) двухскоростного асинхронного двигателя со схемой соединения обмоток

При последовательном соединении секций обмоток число пар полюсов увеличивается вдвое, поэтому номинальная скорость двигателя в этом случае будет вдвое меньше. Так, например, если схеме соединения Y-Y соответствует число пар полюсов рП=2, то номинальная скорость вращения будет 1470об/мин (n=1500об/мин). Переключив обмотки для соединения в звезду (Y), получим рП=4 и номинальную скорость вращения 735об/мин (n=750об/мин).

Поскольку длительно допустимый ток в обмотках должен остаться неизменным, то номинальная мощность на валу двигателя будет:

при схеме Y-Y ,

при схемеY ,

Т.е. мощность двигателя при высокой скорости будет примерно в 2 раза выше, чем при низкой скорости. Однако длитель-но допустимый номиналь-ный момент сохраняется постоянным, т.к. .

Рассмотрим схему тре-угольник — двойная звезда (рис.4.21). В этой схеме соединение «двойная звез-да» соответствует высокой скорости.

Рис.4.21. Схема (а) и механические характеристики двухскоростного двигателя

ри последовательном включении полуобмоток и соединении их в треуголь-ник число пар полюсов увеличивается вдвое, сле-довательно, вдвое снижает-ся скорость двигателя.

Мощность двигателя при этом будет:

,

здесь U1 – фазное напряжение питания.

Длительно допустимый момент при соединении обмоток в Δ будет в раз больше, чем при соединении в двойную звезду. Таким образом, при обеих схемах соединения двигатель примерно сохраняет свою мощность.

Двух и многоскоростные двигатели применяются в тех случаях, когда по условиям технологии необходимо иметь две или более фиксированные скорости вращения приводного электродвигателя.

Асинхронный электродвигатель — преимущества и недостатки

Основными потребителями мировой электроэнергии (более 60% — 65%) являются электромеханические системы — электроприводы, работающие в различных промышленных, транспортных и бытовых механизмах и агрегатах. Асинхронный двигатель является наиболее широко применяемым среди всех типов электродвигателей. Двигатели специальной конструкции, построенные на базе асинхронного двигателя, характеризуются техническими параметрами, влияющими на их рабочие характеристики и адаптирующими их к различным требованиям и назначениям. Среди асинхронных двигателей специальной конструкции можно выделить следующие: многоскоростные двигатели — частота вращения двигателя изменяется изменением количества пар полюсов вращающегося магнитного поля; двигатели с короткозамкнутым ротором с повышенным пусковым моментом — используются для привода устройств с большим моментом инерции; моторы крановые — адаптированы к различным видам работ, используются для привода кранов и других подъемных устройств; двигатели с тормозом — используются в приводах, требующих быстрой остановки после рабочего цикла или после аварийного отключения питания; двигатели с повышенным скольжением — используются для привода механизмов с большой инерционностью, а также механизмов, работающих в повторно-кратковременном режиме; взрывозащищенные двигатели и т.д.

В бытовых электроприборах применяются однофазные электродвигатели с рабочим напряжением 220 вольт. Очень часто таким двигателем является однофазный асинхронный двигатель с короткозамкнутым ротором.

Преимущества асинхронных электродвигателей

  • Самым главным преимуществом асинхронного двигателя является то, что его конструкция довольно проста. По сравнению с электродвигателем постоянного тока, асинхронный электродвигатель не имеет щеток и поэтому требует минимального технического обслуживания. Не требуется замена щеток, и нет угольной пыли от этих самых щеток, которая быстро засоряет электродвигатель. По этой же причине стоимость двигателя довольно низкая.
  • Подключение. Благодаря тому, что в стандартной трехфазной системе питания фазы сдвинуты на 120°, для формирования вращающегося поля не требуются дополнительные элементы и преобразования. Вращение поля внутри статора и, как следствие, вращение ротора обусловлены самой конструкцией асинхронного двигателя. Необходимо обеспечить подачу напряжения через коммутационный аппарат (контактор или пускатель), и двигатель будет функционировать.
  • Работа двигателя не сильно зависит от состояния окружающей среды. Но и для экстремальных условий выпускается большое количество специализированных модификаций асинхронных электродвигателей.
  • В двигателе нет искр из-за отсутствия щеток.
  • Асинхронный двигатель — это высокоэффективная машина с КПД при полной нагрузке от 85 до 97 процентов.

Недостатки асинхронных двигателей

  • Регулировать скорость асинхронного двигателя очень сложно. Это связано с тем, что трехфазный асинхронный двигатель является двигателем с постоянной скоростью и для всего диапазона нагрузок изменение скорости двигателя очень мало. Существуют различные типы устройств, позволяющих регулировать скорость мотора, которые не только расширяют диапазон применения двигателя, но и экономят электроэнергию. Типичными примерами экономии энергии за счет замены нерегулируемых приводов на регулируемые являются такие механизмы, как: насосы — 25%, вентиляторы — 30%, компрессоры — 40% и центрифуги — 50%.
  • Во время прямого пуска, который заключается в подаче на двигатель номинального напряжения номинальной частоты, возникают неблагоприятные условия, такие как высокое потребление тока и низкий пусковой момент.
  • Высокая инерция ротора — двигатель может не справиться с началом вращения тяжелых приводных агрегатов.

На данный момент существует множество механических и электронных устройств, повышающих эффективность электромоторов и позволяющих максимально нивелировать недостатки асинхронных электродвигателей.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector