Arskama.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристики воздушно реактивного двигателя

Характеристики воздушно реактивного двигателя


ПУЛЬСИРУЮЩИЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ
(ПуВРД)

Борис Николаевич Крутиков, к.т.н.

Предлагаемый ПуВРД призван заменить собой неэффективный двигатель внутреннего сгорания, включая газотурбинный двигатель (ГТД). Применение в таком ПуВРД детонационного горения топлива позволит: повысить экономичность двигателя в несколько раз; обеспечить устойчивый процесс самовоспламенения керосина или дизельного топлива; регулировать силу тяги в 5. 10 раз; убрать из конструкции резонансную трубу, клапаны на всасывании воздуха и компрессор; обеспечить запуск и работу двигателя при нулевой скорости полета.

Конструкция простейшего ПуВРД представляет собой цилиндрическую трубу (без диффузора на выходе и со специальной дозвуковой форсункой на входе), которая по существу является воздушным эжектором [1, с. 504].

Рассмотрим особенности работы эжекторного усилителя тяги (ЭУТ) в воздушной среде без горения. Как известно, суммарная реактивная тяга, действующая на все элементы эжектора, неподвижного относительно внешней среды, равна P = (G1 + G2)·W3, где G1, G2 — секундный массовый расход эжектирующего и эжектируемого воздуха из атмосферы, соответственно; W3 — скорость истечения смеси воздуха из эжектора.

Тяга одного сопла, при тех же начальных параметрах, равна P = G1·W1, где W1 — звуковая скорость истечения эжектирующего воздуха из сопла.

Тогда коэффициент эффективности ЭУТ составит К=Р/Ро=(1+n) W3/W1 , (1)

где n = G2/G1 — коэффициент эжекции воздуха в эжекторе.

Решая систему основных уравнений для простейшего неподвижного эжектора для значения коэффициента К в формуле (1) получим три различных выражения: К=К(n,). Например, известно трехкратное увеличение тяги в турбовентиляторе [2, с. 387].

Применение в ПуВРД детонационного горения [3] или пульсирующей струи в эжекторе [4] позволило не только втрое повысить тягу по сравнению с расчетной, но и изменить место приложения силы тяги, при этом скорость истечения детонационной волны из сопла двигателя может быть меньше скорости полета самого двигателя.

Простейшая модернизация эжектора [4, рис. 6] позволит дополнительно увеличить тягу ПуВРД на стенде еще как минимум втрое.
Экспериментальное опробование разработанной конструкции ПуВРД было проведено на камере сгорания со специальной форсункой в цилиндрическом водогрейном котле тепловой мощностью 1,5 МДж/с.

В качестве топлива использовался нагретый до 90 °С мазут или дизельное топливо, распыляемое в форсунке струей сжатого воздуха с полным давлением перед соплом 0,2 МПа.

Длина факела чистого (без копоти) горения дизельного топлива на открытом воздухе составила 2,5 м при диаметре среза сопла форсунки 6 мм, т.е. 400 калибров.

Для проверки качества распыла дизельного топлива были проведены холодные (без горения) испытания форсунки в котле.

Расход сжатого (эжектирующего) воздуха G1 = 0,004 кг/с и перепад давления на сопле форсунки 0,1 МПа обеспечили расход эжектируемого и распыляемого дизельного топлива 0,04 кг/с, а также расход эжектируемого воздуха из атмосферы G2 = 0,6 кг/с. Расходы воздуха определялись расчетным путем.

Двухфазная топливо-воздушная струя из цилиндрического сопла диаметром 6 мм влетала в котел-эжектор диаметром 150 мм, смешивалась с эжектируемым воздухом и продвигалась по котлу длиной 3,5 м, а затем по вертикальному патрубку котла однородной струей диаметром 100 мм уходила к потолку цеха на высоту 12 м.

Этот процесс длился менее 10 с, в течение которых было распылено 0,4 кг дизельного топлива. Спустя две минуты облако распыленного топлива осело на дно цеха, и на площади 400 м 2 образовался туман с пределом видимости около 3 м. Этот туман дизельного топлива представлял собой облако, готовое к объемному взрыву.

Дальнобойность двухфазной струи диаметром 6 мм составила 2500 калибров сопла с коэффициентом эжекции n > 150 (по воздуху).

Аналогичный процесс распыла воды был проведен на отстыкованной от котла камере сгорания диаметром 150 мм и длиной 300 мм, причем опыт показал образование водяного тумана на длине 300 мм, т.е. двух калибров эжектора.

Режим самовоспламенения и детонации топлива в ПуВРД протекал с частотой 25. 40 Гц и уровнем шума около 60 Дб.
Ориентировочное давление воздуха при детонации топлива было 0,4 МПа.

В настоящее время проводится работа по изготовлению бескомпрессорного ПуВРД, предназначенного для вращения турбоэлектрогенератора мощностью 15 КВт, с проектными параметрами: импульс силы тяги — 400 Н; расход парообразного дизельного топлива — 2 кг/ч; масса — 2 кг.

Себестоимость разрабатываемого ПуВРД в 100 раз меньше себестоимости серийного ГТД той же тяги.

Высокая экономичность процесса в ПуВРД достигается благодаря использованию эффекта детонации топлива в пульсирующем режиме, а также благодаря сверхвысокому коэффициенту эжекции воздушного потока n.

Разработанная конструкция и режим работы ПуВРД могут быть использованы для повышения в 3. 10 раз тяги серийных двигателей с реактивной струей, таких как ГТД, ЖРД и РДТТ, работающих в воздушной среде без изменения часового расхода топлива, что позволит быстро и дешево сделать, например, ГТД шестого поколения.

Прямоточный воздушно-реактивный двигатель

Одним из наиболее простых по конструкции силовых агрегатов семейства воздушно-реактивных двигателей является прямоточный воздушно-реактивный двигатель (ПВРД). Как и у всех других ВРД, его тяга обеспечивается сгоранием топлива и образованием реактивного потока, но при этом он имеет и ряд принципиальных отличий.

Устройство ПВРД

Конструкция ПВРД, как было отмечено выше, отличается лаконичностью и минимальным количеством составляющих элементов. В упрощенном варианте он состоит из диффузора, камеры сгорания и сопла, а также вспомогательных систем подачи топлива и зажигания, которые в некоторых моделях могут и отсутствовать. На первый взгляд может показаться, что собрать такой двигатель можно и самостоятельно, ведь в нем нет ничего сложного, но на самом деле это не совсем так. Эффективность работы ПВРД зависит от множества мелких нюансов, в том числе и от формы, геометрии и размеров диффузора и сопла. Эти параметры определяют тип ПВРД, его мощность и сферу применения.

Принцип работы

Работа ПВРД, как и практически всех реактивных двигателей (кроме пульсирующих ВРД), нециклична, то есть беспрерывна. Встречный поток воздуха через входное устройство попадает в диффузор, где снижает свою скорость и сжимается, превращая кинетическую энергию движения во внутреннюю. Сжатый и нагретый воздух с пониженной скоростью попадает в камеру сгорания, перемешивается с впрыснутым форсунками топливом и образует топливный заряд. Полученная горючая смесь воспламеняется от искры или при контакте с горячими стенками двигателя, в результате чего образуются продукты сгорания – газы с большим зарядом энергии. Поток расширяющихся газов проходит через сопло и выходит наружу со скоростью большей, чем скорость полета, образуя реактивную тягу.

В некоторых моделях ПВРД жидкое топливо заменяется твердым, расположенным в камере сгорания, что значительно упрощает его конструкцию. В этом случае система подачи топлива отсутствует, а само топливо представляет собой измельченный порошок бериллия, алюминия или магния, который нагревается и под влиянием температуры и кислорода постепенно окисляется.

Как легко заметить, ПВРД имеет один недостаток: он не может работать при низких скоростях или в неподвижном состоянии. Для его запуска и стабильной работы необходим достаточно мощный встречный воздушный поток, который может обеспечиваться только дополнительным ускорителем.

История создания

Конструкция и принцип работы ПВРД были разработаны и запатентованы французом Рене Лореном в 1913 году. Многих авиаконструкторов того времени привлекла простота устройства этого двигателя, возможность его использования при полетах со сверхзвуковыми скоростями и в разреженных слоях атмосферы. Первые рабочие модели были получены во Франции, США и СССР уже в 30-х годах. Начало Второй мировой войны остановило многие научные работы, но уже в конце 40-х – начале 50-х годов ученые вновь вернулись к ПВРД. Первой ракетой, оснащенной этим двигателем, стала французская Leduc 010, за которой последовали Leduc 021 и Leduc 022. Со временем эксперименты с ПВРД прекратились, а их признали бесперспективными, потому как появились более удобные в использовании и эффективные ТРД.

Среди отечественных разработок стоит отметить межконтинентальную ракету «Буря», над созданием которой работали советские конструкторы. В 1957 году она прошла первые испытания, которые выявили ряд ее недостатков, таких как проблемы с точностью поражения целей. Из современных ракет ПВРД оснащаются П-270 «Москит» и П-800 «Оникс».

Типы ПВРД

В зависимости от скорости, которую они могут развивать, ПВРД делятся на три типа:

  • дозвуковые;
  • сверхзвуковые;
  • гиперзвуковые.

Дозвуковые ПВРД используются для полетов со скоростью, не превышающей звуковой. Они имеют наиболее простую конструкцию, описанную выше, и отличаются довольно низким КПД, что объясняется низкой степенью сжатия воздуха в диффузоре. Диапазон их скоростей находится в пределах 0,5-1М (М – число Маха), если скорость ниже, двигатель перестает работать. Низкий КПД, ограничение по скорости, необходимость первоначального разгона – все это делает дозвуковые ПВРД малоэффективными, поэтому они практически не используются.

Читать еще:  Характеристика двухтактных двигателей мотоциклов

Сверхзвуковые ПВРД развивают скорость в пределах от 1 до 5М. Их легко узнать по характерному конусу, который выступает в передней части и предназначен для скачкообразного торможения воздушного потока. Такие конусы называются центральным телом и обеспечивают внешнее сжатие. При движении на сверхзвуковых скоростях поток воздуха попадает на конусную поверхность и тормозится, причем торможение происходит в виде резкого скачка в несколько этапов (обычно не более 4-х скачков). Скорость при этом остается сверхзвуковой. Далее воздушный поток попадает в диффузор, где продолжает сжиматься и тормозиться до дозвуковой скорости.

Конусы могут заменяться плоскими входными устройствами двухмерного течения без центрального тела. Скачкообразное повышение давления в этом случае обеспечивается сложной формой внутреннего канала. Именно сверхзвуковые ПВРД нашли широкое применение в военной авиации. По своим характеристикам они сравнимы с другими типами ВРД, что в сочетании с простой конструкцией делает их незаменимыми в определенной сфере. Степень сжатия воздуха в таких двигателях сравнима со степенью сжатия в компрессорах ТРД. Правда, диапазон скоростей, на которых они достигают наибольшей эффективности, находится в узких пределах от 3 до 5М.

Гиперзвуковые ПВРД – это пока только научные разработки авиаконструкторов. На сегодняшний день еще нет ни одного экспериментального рабочего образца этих двигателей, диапазон скоростей которых должен быть выше 5М. Его принципиальное отличие от двух предыдущих типов заключается в том, что поток воздуха проходит через диффузор и камеру сгорания со сверхзвуковой скоростью. Сечение всего тракта двигателя постоянно расширяется; поток, проходя по нему, тормозится лишь частично, а при сгорании топлива дополнительно ускоряется, так что его скорость на выходе больше, чем на входе. Основной проблемой при разработке таких двигателей является организация сгорания топлива в условиях сверхзвукового воздушного потока.

Основные отличия ПВРД от других типов двигателей:

  • отсутствие компрессора, как такового. Роль компрессора играет либо диффузор, либо входное устройство;
  • невозможность запуска при нулевой скорости, необходимость внешнего дополнительного ускорителя;
  • эффективная работа только в узких скоростных диапазонах в зависимости от типа ПВРД.

Если сравнивать рабочие характеристики ПВРД и других типов реактивных двигателей, можно сделать вывод, что дозвуковые ПВРД полностью проигрывают своим ближайшим «родственникам» по мощности и КПД. А вот сверхзвуковые модели вполне конкурентоспособные: их термический КПД выше, чем у других реактивных моторов.

Достоинства и недостатки ПВРД

К достоинствам прямоточного ВРД несомненно стоит отнести простоту конструкции и минимальное количество составляющих элементов, а значит, и сравнительно низкую себестоимость. Кроме этого:

  • возможность использования двигателя при полетах на большой высоте в разреженных слоях атмосферы;
  • возможность использования твердого топлива, что упрощает конструкцию;
  • высокий показатель термического КПД у сверхзвуковых ПВРД, достигающий значения порядка 60%, что выше, чем у других реактивных двигателей.

Недостатки:

  • двигатель не может работать при нулевой и при низкой скорости; для его работы необходимо наличие встречного воздушного потока;
  • наиболее перспективные сверхзвуковые ПВРД эффективно работают только в узких скоростных диапазонах (3-5М).

Сфера применения

Использование ПВРД на пилотируемых самолетах нецелесообразно, ведь для их запуска нужны дополнительные двигатели. Намного проще сразу установить, например, ТРД. Именно поэтому их применение сводится к установке на крылатые ракеты, летающие мишени и непилотируемые самолеты, летающие со скоростью в пределах от 2 до 5М. В основном это «одноразовые» двигатели, что вполне логично, учитывая их невысокую стоимость и простую конструкцию. Запуск аппаратов с ПВРД осуществляется за счет их разгона до рабочей скорости с помощью самолетов-носителей или ракетных ускорителей.

Гиперзвуковые ПВРД планируется использовать на космических аппаратах, но пока это только теория.

Несмотря на то, что использование ПВРД в настоящее время ограничено, постоянно ведутся работы по улучшению их рабочих характеристик и созданию новых моделей.

Последняя разработка является двигатель Sabre частной фирмы Reaction Engines.

Суть данного двигателя в том, что традиционные двигатели, которые сегодня применяются в авиации, для полета на гипер скоростях требуют спецрезервуаров с жидким кислородом, если самолет развивает в полете скорость более 3000 км/ч. Обыкновенный воздух на таких скоростях нагревается до очень высоких температур, порядка 1000 градусов по Цельсию, что резко понижает термическое КПД. Особенность двигателя Sabre в том, что позволяет применять атмосферный воздух вместо жидкого кислорода. Когда воздух проходит сквозь двигатель, он сжимается и разогревается, в это время он попадает в холодильник, который оснащен целой системой трубок, которые наполняются гелием эти трубки, гелий охлаждает воздух до необходимой температуры. У двигателя Sabre есть одна особенность. Он в состоянии работать в 2-х режимах: как реактивный двигатель и как ракетный двигатель. Устанавливаться он будет на самолете Skylon. Данная аппарат сможет разогнаться в атмосфере в 5 раз быстрее скорости звука и в 25 раз в открытом космическом пространстве.

Skylon готовиться как космический самолет, способный выводить спутники на низкую орбиту. При этом это будет очень выгодная технология. По словам Алана Бонда, являющегося основателем компании, суммы, которые требуются для запуска спутников и других похожих миссий, могут уменьшиться сразу на 95% в том случае, если будет налажено коммерческое производство двигателей Sabre.

СРАВНЕНИЕ ВОЗДУШНО-РЕАКТИВНЫХ ДВИГАТЕЛЕЙ С МЕДЛЕННЫМ ГОРЕНИЕМ И ГОРЕНИЕМ В ДЕТОНАЦИОННЫХ ВОЛНАХ

Автор: Александр Николаевич Крайко

Организация: Центральный институт авиационного моторостроения имени П.И. Баранова

Выполнено сравнение термических коэффициентов полезного действия и удельных тяг и импульсов прямоточных реактивных двигателей разных типов с медленным («дефлаграционным») горением (МГ) и с горением в движущихся (пульсирующих и вращающихся – «спиновых») и неподвижных детонационных волнах (ДВ). Актуальность такого сравнения обусловлена распространенными, особенно в последнее время, утверждениями о возможном увеличении тяговых характеристик воздушно-реактивных двигателей (ВРД) с горением в ДВ (в первую очередь, в пульсирующих – PDE и вращающихся – RDE ) на десятки процентов в сравнении с прямоточными ВРД (ПВРД) с МГ при постоянном давлении в дозвуковом потоке. Подобные прогнозы, однако, опираются не на прямой расчет тяг этих двигателей, а на сравнение их идеальных термических коэффициентов полезного действия (кпд) – h th и на применимые только к стационарным течениям в инерциальных системах координат формулы, связывающие также идеальные удельные тяги и импульсы с идеальными кпд. Для PDE эти формулы неверны из-за нестационарности течения.

В России утверждения о преимуществах детонационного горения (ДГ) нередко сопровождаются ссылками на заметку Я.Б. Зельдовича [1] 1940 г., переведенную на Западе только в начале XXI века. Для незнакомых с этой заметкой ссылки на столь авторитетного ученого производят требуемый эффект в противоположность тому, что писал сам автор. Хотя Я.Б. Зельдович обнаружил некоторое увеличение термического коэффициента полезного действия (КПД) при ДГ, это не вызвало у него эйфории. Напротив, в той же заметке высказаны только скептические соображения о применении ДГ, например: » . поиски циклов с ДГ в погоне за небольшим увеличением принципиально достижимого кпд бесперспективны» . Ни в этой, ни в других публикациях Я.Б. Зельдовича высказываний в поддержку ДГ нет.

В развитие [1, 2] выполнен термодинамический анализ разных типов ВРД с ДГ и МГ. В исследуемых далее ВРД горению почти всегда предшествует сжатие в воздухозаборнике поступающего из атмосферы со скоростью V воздуха и всегда заканчивается «расчетным» расширением в сопле продуктов сгорания до давления набегающего потока р. В рассматриваемых моделях двигателей предварительное сжатие воздуха в воздухозаборнике и расширение продуктов сгорания в сопле принимаются изэнтропическими и стационарными. По определенным, как в [2], идеальным термическим кпд ( h th ) находится отношение Ve / V , где Ve – скорость на выходе из сопла при расчетном расширении до р. Удельные тяга и импульс пропорциональны разности ( Ve / V – 1). Рассмотренные типы ВРД включают двигатели с МГ при постоянном давлении, как в ПВРД (по циклу Брайтона), и постоянном объеме (по циклу Хэмфри), пульсирующие детонационные двигатели ( PDE ) с горением в ДВ Чепмена — Жуге (ДВ CJ ), ВРД с горением в стационарных ДВ CJ , в том числе, с предварительным торможением сверхзвукового потока ( SDE y ³ 1 , y = Т3, Т и Т3 – температуры холодного воздуха и горючей смеси перед ДВ) и в косой ДВ – SDEOSW (при y = 1).

Читать еще:  Актион нью бензин стуки в двигателе

При фиксированных показателях адиабаты воздуха, горючей смеси и продуктов сгорания идеальные характеристики рассмотренных ВРД, предполагающие, как в [2], отсутствие потерь при торможении воздуха в воздухозаборнике, его смешении с газообразным топливом и истечении продуктов сгорания из реактивного сопла, зависят от двух безразмерных параметров: числа Маха полета М и q ° = q /( cpT ) – безразмерной теплотворной способности горючей смеси (ср – теплоемкость при постоянном давлении). При q ° = 6 и 9 сравнение идеальных кпд h th и рассчитанных по h th с помощью упомянутых выше формул (незаконных для PDE ) идеальных удельных тяг и импульсов всех рассмотренных двигателей выполнено для М от 0.3 до 8. Для этих q ° и М по такой идеальной тяге PDE незначительно превосходит ВРД с горением при постоянном объеме (по циклу Хэмфри), а ПВРД с МГ – намного только при М PDE над идеальными тягами других ВРД за исключением SDEOSW быстро уменьшается. Так, при q ° = 6 и 9 превосходство по идеальной тяге PDE над остальными становится малым при увеличении числа Маха полета М.

Пусть PDE имеет n цилиндрических, синхронно работающих групп детонационных камер (ДК) с мгновенно открывающимися и закрывающимися клапанами (входными силовыми стенками). При открытых клапанах в ДК поступает идеально перемешанная горючая смесь. Период работы одной ДК PDE можно разбить на несколько этапов: 1. Открытие клапана, заполнение ДК горючей смесью, мгновенные закрытие клапана и инициирование ДВ волны у входного конца ДК; 2. Приход ДВ на правый конец ДК – сечение входа в идеально регулируемое реактивное сопло; 3. ДВ отражается от правого частично открытого сечения ДК (сужения сопла) как ударная волна (УВ), которая движется к закрытому входному сечению ДК. Далее нестационарные ударные волны, двигаясь по ДК, могут несколько раз отразиться от ее концов. Несмотря на затухание, отражающиеся УВ – не учитываемый при определении идеальных характеристик PDE источник роста энтропии. Клапан мгновенно открывается, когда среднее давление продуктов сгорания в ДК становится меньше давления заторможенного воздуха и идеально перемешанного с ним топлива в объеме перед клапаном.

Истечение продуктов сгорания происходит на протяжении всего цикла работы PDE . Течение в расширяющейся части сопла квазистационарное и изэнтропическое, площадь выходного сечения сопла идеально регулируемая. Расчёты проводились в рамках одномерной задачи в приближении уравнений Эйлера. Система уравнений одномерной нестационарной газовой динамики численно решалась с помощью явной монотонной распадной разностной схемы второго порядка (для гладких решений) по пространственной координате х и по времени t . Второй порядок по времени обеспечивался привлечением схемы Рунге — Кутты. При заданных f ° (отношении площади критического сечения сопла к площади поперечного сечения ДК), М и q ° в течении периода работы ДК PDE отношение скоростей Ve / V получается как функция времени. Его интегрирование по периоду дает средние значения Ve / V и тяговые характеристики с учетом нестационарности и неизэнтропичности течения продуктов сгорания в детонационной камере.

На рисунке приведены кривые отношений Ve / V для ПВРД (цикл Брайтона, от времени не зависит) и для PDE : посчитанных по идеальному термическому кпд ( PDEth ) и для нескольких значений f °, найденных в рамках описанной выше нестационарной модели. Видно, что в типичных ситуациях ПВРД лучше многокамерных PDE с вращающимся клапаном (для f ° = 0.3 и 0.1 – при М ³ 2 и М ³ 3). Согласно [3] тяговые характеристики ПВРД заведомо лучше тяговых характеристик и однокамерного PDE , предложенного в [4]. По этим характеристикам уступают ПВРД и все рассмотренные выше ВРД с горением в стационарных ДВ. Из еще не рассмотренных «детонационных» ВРД в последнее время особое внимание уделяется двигателям с вращающейся или спиновой ДВ ( RDE ). Одно из объяснений такого внимания – переход к стационарному течению во вращающейся со скоростью ДВ системе координат и последующие рассуждения с сохраняющейся в стационарных потоках полной энтальпией. При этом, правда, забывают, что в координатах, вращающихся с угловой скоростью w , вдоль линий тока сохраняется не «обычная» полная энтальпия H , а разность H ° = H – ( w r ) 2 /2. В кольцевой камере сгорания RDE произведение w r равно скорости детонационной волны. Поэтому величина w так велика, что любые изменения радиальной координаты r при истечении продуктов сгорания заведомо исключают возможность определения отношения Ve / V через h th ВРД с ДГ. В противоположность этому, в силу сохранения H удельный импульс Isp RDE с сужающимся центральным телом и цилиндрической «внешней» образующей сопла заметно уменьшится. То что это так, подтверждают низкие значения Isp , рассчитанные в [5] для четырех вариантов RDE , летящих с М = 5 в однородной стехиометрической смеси водорода и воздуха с параметрами атмосферы Земли на высоте 20 км. Эти значения Isp = 1990, 2350, 2300 и 2250 с «традиционно» для авторов [5] (см. [3]) завышены: определяя Isp , они почему-то не учитывают сопротивления наветренной части центрального тела воздухозаборника. Исправленные значения Isp близки к 1420, 1830, 1780 и 1720 с, однако даже завышенные величины Isp заметно меньше Isp ПВРД, который при тех же условиях по оценке авторов [3] равен 3500 ¸ 3900 с. Дополнительное возрастание энтропии в RDE также имеет место – в УВ, примыкающей к ДВ на границе свежей горючей смеси и продуктов сгорания. Правда, интенсивность этой УВ невелика.

Итак, утверждения о возможном увеличении тяговых характеристик ВРД на десятки процентов благодаря использованию ДГ необоснованны. Даже для дозвуковых и малых сверхзвуковых чисел Маха полета, на которых ВРД с МГ может по тяговым характеристикам уступать PDE , последние заведомо уступают ТРД с МГ. Поэтому преимущества ВРД с ДГ, если и возможно, то не по тяговым характеристикам, а по простоте конструкции (как при малых М по сравнению с ТРД) или по меньшей теплонапряженности тракта двигателя (напротив, при больших сверхзвуковых числах Маха М > 5 в сравнении c пульсирующим детонационно-дефлаграционным двигателем [6]).

Работа выполнена при поддержке РФФИ (проект 17-01-00126).

Рисунок: кривые Ve / V ПВРД (цикл Брайтона) и PDE , рассчитанные по идеальному кпд ( PDEth ) и по нестационарной модели

1. Зельдович Я.Б. К вопросу об энергетическом использовании детонационного горения // ЖТФ. 1940. Т. 10. Вып. 17. С. 1453-1461.

2. Heiser W.H., Pratt D.T. Thermodynamic Cycle Analysis of Pulse Detonation Engines // J. of Propulsion and Power. 2002. V. 18. No. 1. P. 68-76.

3. Егорян А.Д., Крайко А.Н., Пьянков К.С., Тишин А.П. О расчете характеристик импульсного детонационного двигателя и их сравнении с характеристиками ПВРД // Теплофизика и аэромеханика. 2016. Т . 23. № 2. С . 307-310.

4. Remeev N.Kh., Vlasenko V.V., Khakimov R.A. Analysis of operation process and possible performance of the supersonic ramjet-type pulse detonation engine // Pulse and continuous detonation propulsion / Eds. G. Roy, S. Frolov. Moskow: TORUS PRESS, 2006. P . 235-250.

5. Дубровский А.В., Иванов В.С., Зангиев А.Э., Фролов С.М. Трехмерное численное моделирование характеристик прямоточной воздушно-реактивной силовой установки с непрерывно-детонационной камерой сгорания в условиях сверхзвукового полета // Химическая физика. 2016. Т. 35. № 6. С. 49-63.

6. Крайко А.Н., Александров В.Ю., Александров В.Г. и др. Способ организации горения топлива и детонационно-дефлаграционный пульсирующий прямоточный воздушно-реактивный двигатель. 2016. Патент РФ № 2585328.

Ядерные двигатели в крылатых ракетах. Досье

ТАСС-ДОСЬЕ. 19 июля 2018 года в Минобороны сообщили журналистам, что Россия готовится провести летные испытания опытных образцов усовершенствованной крылатой ракеты «Буревестник» с ядерным двигателем. В ведомстве указали, что малозаметная крылатая ракета с практически неограниченной дальностью, несущая ядерную боевую часть, является неуязвимой для всех существующих и перспективных систем как противоракетной, так и противовоздушной обороны.

Редакция ТАСС-ДОСЬЕ подготовила справочный материал о проектах использования ядерных двигателей в крылатых ракетах.

Ядерные двигатели

Идея использовать ядерные двигатели в авиации и космонавтике возникла в 1950-х годах вскоре после создания технологии управляемой атомной реакции. Плюсом такого двигателя является длительное время работы на практически не расходуемом в полете компактном источнике топлива, что означает неограниченную дальность полета. Минусами были большой вес и габариты атомных реакторов того времени, сложность их перезарядки, необходимость обеспечения биологической защиты обслуживающего персонала. С начала 1950-х годов ученые СССР и США независимо друг от друга изучали возможность создания разных типов атомных двигателей:

  • ядерный прямоточный воздушно-реактивный двигатель (ЯПВРД): в нем поступающий через воздухозаборник воздух попадает в активную зону реактора, нагревается и выбрасывается через сопло, создавая нужную тягу;
  • ядерный турбореактивный двигатель: действует по похожей схеме, но воздух перед попаданием в реактор сжимается компрессором;
  • ядерный ракетный двигатель: тяга создается за счет нагрева реактором рабочего тела, водорода, аммиака, других газов или жидкостей, которые затем выбрасываются в сопло;
  • ядерный импульсный двигатель: реактивную тягу создают поочередные ядерные взрывы малой мощности;
  • электрореактивный двигатель: вырабатываемая реактором электроэнергия используется для нагрева рабочего тела до состояния плазмы.
Читать еще:  Что нужно для диагностики двигателя машины

Наиболее подходящими для крылатых ракет и самолетов являются прямоточный воздушно-реактивный или турбореактивный двигатель. В проектах крылатых ракет предпочтение традиционно отдавалось первому варианту.

Советские проекты

В СССР работами по созданию ядерного прямоточного воздушно-реактивного двигателя занималось ОКБ-670 под руководством Михаила Бондарюка. ЯПВРД был предназначен для модификации межконтинентальной крылатой ракеты «Буря» («изделие 375»), которую с 1954 года проектировало ОКБ-301 под руководством Семена Лавочкина. Стартовый вес ракеты достигал 95 т, дальность должна была составить 8 тыс. км. Однако в 1960 году через несколько месяцев после смерти Лавочкина проект «обычной» крылатой ракеты «Буря» был закрыт. Создание же ракеты с ЯПВРД так и не вышло за рамки предэскизного проектирования.

Впоследствии специалисты ОКБ-670 (переименованного в КБ «Красная Звезда») занялись созданием ядерных ракетных двигателей для космических и боевых баллистических ракет, однако ни один из проектов так и не дошел до стадии испытаний. После смерти Бондарюка работы над авиационными ядерными двигателями были фактически прекращены.

К ним вернулись лишь в 1978 году, когда при НИИ тепловых процессов было образовано конструкторское бюро из бывших специалистов «Красной Звезды», занимавшееся прямоточными воздушно-реактивными двигателями. Одной из их разработок стал ядерный прямоточный воздушно-реактивный двигатель для более компактной, по сравнению с «Бурей», крылатой ракеты (стартовой массой до 20 т). Как писали СМИ, «проведенные исследования показали принципиальную возможность реализации проекта». Однако о ее испытаниях не сообщалось.

Само КБ просуществовало под различными названиями (НПВО «Пламя», ОКБ «Пламя-М») до 2004 года, после чего закрыто.

Опыт США

С середины 1950-х годов ученые Радиационной лаборатории в Ливерморе (штат Калифорния) в рамках проекта Pluto разрабатывали ядерный прямоточный воздушно-реактивный двигатель для сверхзвуковой крылатой ракеты.

К началу 1960-х годов были созданы несколько прототипов ЯПВРД, первый из которых — Tory-IIA — был испытан в мае 1961 года. В 1964 году начались испытания новой модификации двигателя — Tory-IIC, который смог проработать пять минут, показав тепловую мощность около 500 МВт и тягу в 16 т.

Однако вскоре проект был закрыт. Традиционно считают, что причиной этого как в США, так и в СССР стало успешное создание межконтинентальных баллистических ракет, способных доставить ядерные боезаряды на территорию противника. В этой ситуации межконтинентальные крылатые ракеты не выдержали конкуренции.

В России

1 марта 2018 года, выступая с посланием Федеральному собранию РФ, президент России Владимир Путин сообщил, что в конце 2017 года на Центральном полигоне Российской Федерации была успешно испытана новейшая крылатая ракета с ядерной энергоустановкой, дальность полета которой «является практически неограниченной». Ее разработка была начата после выхода США в декабре 2001 года из Договора об ограничении систем противоракетной обороны 1972 года. Название «Буревестник» ракета получила 22 марта 2018 года по итогам открытого голосования на сайте Минобороны.

Энциклопедия

  • 1

Двигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела; в результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде реакции (отдачи) струи, перемещающая в пространстве двигатель и конструктивно связанный с ним аппарат в сторону, противоположную истечению струи. В кинетическую (скоростную) энергию реактивной струи в Р.д. могут преобразовываться различные виды энергии (химическая, ядерная, электрическая, солнечная). Р.д. (двигатель прямой реакции) сочетает в себе собственно двигатель с движителем, т. е. обеспечивает собственное движение без участия промежуточных механизмов.

Для создания реактивной тяги, используемой Р.д., необходимы: источник исходной (первичной) энергии, которая превращается в кинетическую энергию реактивной струи; рабочее тело, которое в виде реактивной струи выбрасывается из двигателя; сам Р.д., как преобразователь энергии. Исходная энергия может запасаться на борту летательного или др. аппарата, оснащенного Р.д. (химическое топливо, ядерное топливо, источник электрической энергии и т.д.), или поступать извне (например, энергия Солнца). Для получения рабочего тела в Р.д. может использоваться вещество, отбираемое из окружающей среды (например, воздух или вода); вещество, находящееся в баках аппарата или непосредственно в камере Р.д.; смесь веществ, поступающих из окружающей среды и запасаемых на борту аппарата. В современных Р.д. в качестве первичной чаще всего используется химическая энергия. В этом случае рабочее тело представляет собой продукты сгорания химического топлива. При работе Р.д. химическая энергия сгорающих веществ преобразуется в тепловую энергию продуктов сгорания, которая, в свою очередь, превращается в механическую энергию поступательного движения реактивной струи и, следовательно, аппарата, на котором установлен двигатель. Основной частью любого Р.д. является камера сгорания, в которой генерируется рабочее тело. Конечная часть камеры, служащая для ускорения рабочего тела и получения реактивной струи, называется газодинамическим или реактивным соплом.

В зависимости от того, используется или нет при работе Р.д. окружающая среда, их подразделяют на два основных класса: воздушно-реактивные двигатели (ВРД) и ракетные двигатели (РД). Все ВРД — тепловые двигатели, рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха. Поступающий из атмосферы воздух составляет основную массу рабочего тела ВРД. Таким образом, аппарат с ВРД несёт на борту источник энергии (горючее), а большую часть рабочего тела (окислитель) черпает из окружающей среды. В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащенного РД. Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД единственно пригодным для работы в космосе.

Р.д. имеют различное назначение и область их применения постоянно расширяется. Наиболее широко Р.д. используются на летательных аппаратах различных типов. Турбореактивными двигателями и двухконтурными турбореактивными двигателями оснащено большинство военных и гражданских самолётов во всём мире, а также ряд типов вертолётов. Эти Р.д. пригодны для полётов как с дозвуковыми, так и со сверхзвуковыми скоростями; их устанавливают также на самолётах-снарядах. Сверхзвуковые турбореактивные двигатели могут использоваться на первых ступенях воздушно-космических самолётов. Прямоточные ВРД устанавливают на зенитных управляемых ракетах, крылатых ракетах, сверхзвуковых истребителях-перехватчиках. Пульсирующие ВРД имеют небольшую тягу и предназначаются лишь для летательных аппаратов с дозвуковой скоростью.

Основные характеристики Р.д.: реактивная тяга, удельный импульс тяги – отношение тяги к массе ракетного топлива (рабочего тела), расходуемого в 1 сек; удельная масса двигателя – масса заправленного Р.д. в рабочем состоянии, приходящаяся на единицу развиваемой им тяги. Для многих типов Р.д. важными характеристиками являются также габариты и ресурс.

Реактивная тяга – есть результирующая сил, действующих на внутреннюю и внешнюю поверхность камеры реактивного двигателя, т.е. сила, с которой Р.д. воздействует на аппарат, оснащенный этим реактивным двигателем. Тяга определяется по формуле:P = mwа+ Fа(pа – pн); где m – массовый расход (расход массы) рабочего тела за 1 сек; wа – скорость рабочего тела (продуктов сгорания) в выходном сечении сопла; Fа – площадь выходного сечения сопла; pа – давление продуктов сгорания в выходном сечении сопла; pн – давление окружающей среды (наружное).

Как видно из формулы, тяга Р.д. зависит от давления окружающей среды. Она больше всего в пустоте и меньше всего в наиболее плотных слоях атмосферы, т. е. изменяется в зависимости от высоты полёта аппарата над уровнем моря, если речь идёт о полёте в атмосфере Земли. Удельный импульс Р.д. прямо пропорционален скорости истечения рабочего тела из сопла. Скорость же истечения увеличивается с ростом температуры истекающего рабочего тела и уменьшением молекулярной массы топлива (чем меньше молекулярная масса топлива, тем больше объём газов, образующихся при его сгорании, и, следовательно, скорость их истечения).

Р.д. используются в различных видах реактивного оружия, основу которого составляют наземные. авиационные и морские реактивные системы залпового огня («Град», «Ураган», «Смерч»; С-8, С-13; «Удав-1», «Дамба» и др. Разновидность Р.д.-ракетные двигатели — применяются на ракетах стратегического назначения, которыми вооружены РВСН.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector