0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Шаговый двигатель чем больше индуктивность

Шаговый двигатель чем больше индуктивность

1. Что такое шаговый двигатель?
Шаговый двигатель представляет собой силовой привод, который преобразует электрические импульсы в угловое перемещение. Говоря простым языком, когда шаговый привод получает импульсный сигнал, он приводит в действие двигатель, который в свою очередь начинает вращаться в заданном направлении под фиксированным углом, называемым углом шага. Величину углового перемещения можно регулировать путем установки количества импульсов, что позволяет достичь точного позиционирования. В то же время, скорость и ускорение вращения двигателя можно регулировать путем изменения частоты импульсов.

2. Какова классификация шаговых двигателей?
Шаговые двигатели обычно подразделяются на три типа: шаговые двигатели с постоянными магнитами (PM), шаговые двигатели с переменным магнитным сопротивлением (VR) и гибридные шаговые двигатели (HB).

Шаговые двигатели с постоянными магнитами, как правило, двухфазные. Крутящий момент и объем относительно небольшие, а угол шага, как правило, составляет 7,5 или 15 градусов.

Шаговые двигатели с переменным магнитным сопротивлением, как правило, трехфазные и способны создавать большой крутящий момент. Угол шага, в основном, 1,5 градуса. Высокий уровень шума и вибрации. Этот тип шагового двигателя вышел из применения в Европе, Соединенных Штатах и других развитых странах в 80-х годах 20 века.

Гибридные шаговые двигатели объединяют преимущества двигателей с постоянными магнитами и двигателей с переменным магнитным сопротивлением. Они могут быть двухфазными, трехфазными и пятифазными. Угол шага, как правило, составляет 1,8 градуса, 1,2 градуса и 0,72 градуса соответственно для 2-х, 3-х и 5-ти фазного двигателя. Среди шаговых двигателей на существующем рынке наиболее широкое распространение получили двухфазные модели.

3. Что такое удерживающий момент?
Удерживающий момент необходим статору для блокировки ротора, когда шаговый двигатель находится под напряжением, но не вращается. Как правило, крутящий момент шагового двигателя на низкой скорости близок к удерживающему моменту. Так как выходной крутящий момент уменьшается с увеличением скорости, выходная мощность также изменяется, и удерживающий момент становится одним из наиболее важных параметров шагового двигателея. Например, когда люди говорят «шаговый двигатель 2 Н·м», в случае отсутствия особых примечаний, это означает «шаговый двигатель с удерживающим моментом 2 Н·м».

4. Что такое фиксирующий момент?
Фиксирующей момент присутствует в обесточенном шаговом двигателе. Шаговые двигатели с переменным магнитным сопротивлением и роторами не из постоянных магнитных материалов не имеют фиксирующего момента.

5. Какова погрешность шагового двигателя? Она накапливается?
Погрешность шагового двигателя составляет ±5% угла шага и она не накапливается.

6. Какова допустимая температура поверхности шагового двигателя?
Перегрев шагового двигателя вызовет размагничивание магнитных материалов и приведет к снижению крутящего момента и сбою углов шага. Следовательно, максимальная допустимая температура поверхности двигателя зависит от точки размагничивания материалов, используемых в двигателе. Обычно, точка размагничивания магнитных материалов находится выше 130 ℃. Некоторые материалы имеют точку размагничивания на уровне 200 ℃. Поэтому, температура поверхности шагового двигателя в пределах 80-90 градусов по Цельсию совершенно нормальна.

7. Почему крутящий момент шагового двигателя снижается по мере увеличения скорости?
Когда шаговый двигатель вращается, индуктивность фазы обмотки двигателя образует обратную электродвижущую силу. Чем выше частота, тем больше обратная электродвижущая сила. Под действием обратной электродвижущей силы, фазовый ток уменьшается по мере увеличения частоты или скорости, что приводит к уменьшению крутящего момента.

8. Почему шаговый двигатель в состоянии нормально работать при низких скоростях, но не в состоянии стартовать на скорости выше определенного значения, а работа двигателя на таких сопровождается завыванием?
Шаговый двигатель имеет следующий технический параметр: стартовая частота холостого хода, которая является частотой импульсов, при которой шаговый двигатель может стартовать на холостом ходе. Если частота импульсов выше этого значения, то двигатель не может стартовать нормально, может случиться потеря шага или двигатель заглохнет. Начальная частота должна быть ниже в случае, когда двигатель под нагрузкой. Если необходимо достичь высокой скорости вращения, необходимо увеличивать частоту импульсов, то есть начать необходимо с низкой частоты, а затем повышать частоту импульсов на желаемое значение при помощи ускорения (повышение скорости двигателя с низкой до высокой).

9. Как устранить шум и вибрацию, которые возникают при работе на низких скоростях двухфазного гибридного шагового двигателя?
Шаговым двигателям присущи такие негативные особенности, как шум и вибрация при работе на низкой скорости. Их можно устранить следующими способами:
А. Если двигатель работает в области резонанса, изменяйте передаточное отношение или предпринимайте другие меры, чтобы избегать резонанса;
Б. Используйте приводы с функцией разделения. Это наиболее простой и часто используемый способ;
В. Замените двухфазный двигатель на двигатель с меньшим углом шага, например, на трехфазный или пяти-фазный шаговый двигатель;
Г. Замена двухфазного шагового двигателя на серводвигатель переменного тока для может почти полностью устранить шум и вибрацию, однако стоит такой двигатель относительно дорого;
Д. Зафиксируйте амортизатор двигателя для предотвращения резонанса с нижней пластиной. Этот распространенный метод позволяет значительно снизить шум.

10. Как количество разделений драйвера влияет на точность?
Технология разделения шагового двигателя по существу является технологией электронной разгрузки (пожалуйста, обратитесь к соответствующей литературе). Ее основной целью является ослабление или устранение низкочастотной вибрации шагового двигателя. Повышение точности работы двигателя является лишь сопутствующей функцией этой технологии. Например, существует двухфазный гибридный шаговый двигатель, угол шага которого составляет 1,8°. Если количество разделений драйвера установлено на 4, двигатель будет работать 0,45 ° на импульс. Но может ли точность двигателя может приблизиться или достичь 0,45°, зависит от точности управления током разделения и от других факторов. точность разделения драйвера от разных производителей может значительно изменяться. Чем больше число разделения, тем труднее контролировать точность.

11. Как определить источник питания постоянного тока для привода шагового двигателя?
А. Определение напряжения
Напряжение источника питания гибридного привода шагового двигателя, как правило, находится в пределах достаточно широкого диапазона (обычно от 12 до 48 В постоянного тока). Его выбирают в зависимости от рабочей скорости и отклика двигателя. Если двигатель вращается быстро и быстро реагирует, напряжение должно быть высоким. Но учтите, что пульсация напряжения источника питания не должна превышать максимальное входное напряжение привода, в противном случае привод может быть поврежден.

Б. Определение тока
Источник электропитания, как правило, определяется в соответствии с выходным фазным током (I) привода. Если применяется линейный источник питания, то сила тока может быть выбрана равной 1,1 или 1,3 от I. При использовании импульсного источника питания, ток может составлять от 1,5 до 2,0 от I.

12. Как отрегулировать направление вращения механизированного двухфазного шагового двигателя простым способом?
Это можно сделать, просто поменяв местами A+ и A- (или В+ и В-) проводки двигателя и привода.

При приобретении двигателя как правило возникает вопрос — какую модуль выбрать? На самом деле, при выборе двигателя нужно обратить внимание на два аспекта: параметры и размер.

Рабочие характеристики двигателя определяются по следующим параметрам:
Шаговый двигатель: угол шага, фаза тока, крутящий момент, сопротивление и др.
Бесщеточный двигатель или серводвигатель переменного тока: мощность, скорость, крутящий момент, приводной режим и др.

Читать еще:  Возможные неисправности двигателя для скутера

Для выбора размера, прежде всего следует обратить внимание на внешний диаметр или длину стороны и длину корпуса. В то же время, клиенты должны принять во внимание размер крышки и выступов, размеры вала, требования к выводящим проводам и другие факторы.

Возможно, у клиента есть определенные требования к двигателю, такие как гидроизоляция, высокая термостойкость, длительный срок службы и др. В таком случае вопрос об индивидуальной настройке и конфигурации решается с поставщиком отдельно.

Шаговый двигатель

Шаговые электродвигатели (ШД) используются там, где нужно позиционирование повышенной точности.

Что такое шаговый двигатель? Это синхронный двигатель без щеток, имеющий несколько обмоток. Для фиксации ротора в определенной позиции ток подается в одну из обмоток статора. По поступлении тока в другую обмотку ротор меняет позицию. Это и есть «шаг».

Типы ШД и их устройство

  1. С переменным магнитным сопротивлением. На статичной части таких ШД есть несколько полюсов. Ротор – зубчатой формы из мягкого материала, ненамагниченный. Если, к примеру, статор 6-полюсный, а ротор из 4 зубцов, то независимых обмоток на двух противоположных статорных полюсах будет 3. Шаг мотора будет равен 30 ° .
  2. С постоянными магнитами в роторе. Прямолинейные полюсы параллельны оси двигателя. Поскольку магнитный поток мощнее, крутящий момент на порядок выше, чем в ШД первого типа. Шаг такого мотора – от 7,5 до 15°.Может быть от 24 до 48 шагов на оборот.
  3. Гибридные ШД (ГШД). Установка зубцов в направлении оси сокращает величину шага. Крутящий момент и скорость возрастают. Обычно бывает от 100 до 400 шагов за оборот при угле шага 0,9-3,6°. Наиболее распространен биполярный ШД nema. Только в гибридных ШД применяется режим микрошага. Управление обмотками независимое. Плавность вращения подвижной части повышена. Возможны 51200 шагов за оборот. Точность позиционирования оптимальна. Обеспечивается более низкая магнитная проводимость зазоров относительно удельной проводимости зубцов.

ШД по типу обмоток подразделяются на:

  • Биполярные с одной обмоткой для каждой фазы. Переплюсовка драйвером изменяет направление магнитного поля.
  • Униполярные. В каждой фазе одна обмотка, но из середины каждой обмотки имеется отвод. Направление поля меняется за счет переключения используемой половины обмотки. Драйвер имеет только 4 ключа.

Характеристики ШД

  1. Крутящий момент. Его измеряют в кг-сила-см. Чем выше показатель зависимости вращательного момента от частоты вращения, тем быстрее ШД набирает обороты после включения.
  2. Удерживающий момент или сила блокирования ротора статором при включенном, но не запущенном моторе. Его измеряют в унциях-на-дюйм.
  3. Тормозящий или стопорный момент, т.е. сила, которая удерживает ротор от вращения без подачи тока. В ГШД эта величина в 10 раз меньше величины силы удерживания ротора от вращения при полной подаче тока. Измеряется в унциях-на-дюйм.
  4. Номинальное напряжение, зависящее от индуктивности обмоток. Указывается в вольтах. По нему определяют оптимальное напряжение для подачи в мотор. Наилучшее напряжение превышает номинальное. Превышение силы подаваемого тока ведет к перегреву и поломке двигателя. При недостаточном напряжении он не запустится. Оптимальную силу тока определяют по формуле U = 32 x√ L. L – индуктивность обмотки, а U – искомое значение.
  5. Диэлектрические испытания. По максимальному напряжению, которое выдерживает обмотка в течение определенного времени, определяют сопротивление мотора перегрузкам.
  6. Момент инерции ротора – это скорость разгона ШД, которую измеряют в грамм-квадратных см.
  7. Число полных шагов за оборот. Чем оно больше, тем мощнее и быстрее мотор.
  8. Длина корпуса без учета вала и общая масса или вес изделия. По габаритам и массе определяют, когда нужен компактный двигатель, а когда – крупнее и мощнее.

К примеру, в ШД PL57H41 PL57 – ширина-высота (диаметр) по квадратному фланцу 57 мм, H41 – длина двигателя без вала, равная 41 мм. Диаметр двигателя влияет на все его моменты больше, чем длина.

Инкодеры, драйверы и подключение

Специальные драйверы подключают к компьютерному LTP-порту и посредством их управляют ШД. Драйвер – это практически блок управления ШД. В шаговых двигателях для ЧПУ к драйверу присоединяют 4 вывода ШД и управляющие провода с контроллера ЧПУ, и плюс и минус с блока питания. Поступая в драйвер, сигналы контроллера управляют переключением ключей силовой схемы питающего напряжения. Через эти ключи питающее напряжение идет на двигатель.

Максимальный выдаваемый на выводы для обмоток мотора ток нужного напряжения – основной критерий подбора драйвера. Идущий с драйвера ток не должен быть ниже тока, потребляемого мотором. Параметры выходного напряжения выставляются переключателями на драйвере.

В двигателе может быть от 4 до 6 проводов, и от их количества зависит порядок подключения ШД. Биполярные механизмы сочетаются только с 4-проводными двигателями.

На каждые 2 обмотки приходится 2 провода. Самые мощные 6-проводные моторы могут подключаться и к биполярным, и к униполярным устройствам, и в них на каждую обмотку приходится средний провод или центр-кран и 2 провода. В униполярных моторах на каждую обмотку приходятся 3 провода. Два из них подсоединяют к транзисторам, а центр-кран – к источнику питания.

В 5-проводных ШД центральные провода вместе с остальными входят в общий кабель. Предпочтительно найти средний провод и соединить его с другими проводниками.

Датчики, подающие сигналы программному обеспечению, называют энкодерами и часто применяют с ШД. Энкодер нужен, когда налицо нелинейная зависимость от количества шагов.

Области использования, достоинства и недостатки

Шаговые двигатели для ЧПУ широко применяются в координатных столах и системах автоматизации. Панелям управления, программирования и станкам с ЧПУ не обойтись без ШД.

ШД – достойная альтернатива серводвигателю, поскольку, в отличие от него:

  1. Хорошо работает при весьма разнообразных нагрузках.
  2. Имеет постоянный угол поворота и стандартизированные габариты.
  3. Имеет низкую стоимость.
  4. Прост в монтаже и эксплуатации, долговечен и надежен.
  5. Пропуская шаги, не сгорает при крайне высоких оборотах.

Тем не менее, ШД уступает серводвигателю в том, что:

  1. У него мал КПД и велико энергопотребление.
  2. Увеличение частоты оборотов резко снижает крутящий момент.
  3. Мощность слишком мала для таких габаритов и веса.
  4. Велик нагрев двигателя при работе.
  5. Мотор слишком шумит на высокой и средней частотах.

Можно ли управлять шаговым двигателем более 1000 об / мин?

Как я могу управлять шаговым двигателем со скоростью более 1000 об / мин?

Двигатель с шагом 200 на оборот, работающий на скорости 1000 об / мин, должен иметь шаговый привод, способный выполнять полные шаги на частоте 3,4 кГц, что находится в пределах диапазона большинства цепей привода двигателя.

Однако имейте в виду, что если вы запустите двигатель на частоте 3,4 кГц, он будет просто вибрировать из-за инерции — вы не заводите автомобиль со скоростью 60 миль в час, вы начинаете с 0 и разгоняетесь до 60 миль в час, в противном случае вы просто крутите свои шины.

Таким образом, вы должны спроектировать свою схему так, чтобы частота росла с 0 до 3,4 кГц достаточно медленно, чтобы двигатель не отставал. Это означает, что вам также придется учитывать всю трансмиссию — шаговый двигатель, шестерни, ремни и все остальное, что движется шаговый двигатель. Это может быть большая платформа, если вы используете ЧПУ, и инерция может потребовать очень медленного нарастания во избежание пропуска шагов.

Читать еще:  Характеристика двигателя переключения передач

Наконец, если двигатель недостаточно мощный, чтобы перемещать нагрузку со скоростью 1000 об / мин, вам понадобится более мощный шаговый двигатель. Крутящий момент падает при увеличении скорости из-за внутренних потерь двигателя.

Какие факты о шаговых двигателях и принципах я должен иметь в виду, чтобы разработать схему для достижения этой цели?

Геккон имеет хорошее базовое введение в шаговые двигатели . Конструкция блока питания, согласование привода с двигателем, чтобы вы не теряли слишком много энергии при проблемах несоответствия и т. Д., Рассматриваются в самых простых терминах. Как только вы поймете основы, задайте более подробные вопросы для конкретных ответов.

Есть ли готовые / открытые альтернативы и схемы, доступные для решения этой задачи?

Если вы используете проект с низким энергопотреблением, проект RepRap имеет несколько разумных драйверов шаговых двигателей. С другой стороны, простой поиск в Google дает много информации с открытым исходным кодом шагового драйвера.

Так как вы не предоставляете более подробную информацию о том, что вы ведете, и какой двигатель вы используете, я не могу предложить ничего конкретного.

Нужно ли подходить к дизайну для редукторных и нередуктивных шаговых двигателей?

Не с точки зрения дизайна водителя — единственное отличие состоит в том, что зубчатая передача увеличивает массу приводной линии, что требует более медленного времени разгона.

Однако, чем больше зубчатая передача, тем больше люфта вы можете испытать, так что механическая конструкция намного больше, если вам требуется скорость и точность.

Но конструкция шагового привода в обоих случаях одинакова.

Если вам нужна большая скорость и / или мощность, вам следует рассмотреть использование серводвигателей с ЧПУ, а не шаговых двигателей.

Шаговые двигатели

Шаговые двигатели относятся к классу бесколлекторных двигателей постоянного тока. Как и любые бесколлекторные двигатели, они имеют высокую надежность и большой срок службы, что позволяет использовать их в критичных, например, индустриальных применениях.

По сравнению с обычными двигателями постоянного тока, шаговые двигатели требуют значительно более сложных схем управления, которые должны выполнять все коммутации обмоток при работе двигателя. Выбор контроллера для управления шаговым двигателем описан в статье Контроллеры ШД. Кроме того, сам шаговый двигатель – дорогостоящее устройство, поэтому там, где точное позиционирование не требуется, обычные коллекторные двигатели имеют заметное преимущество. Справедливости ради следует отметить, что в последнее время для управления коллекторными двигателями все чаще применяют контроллеры, которые по сложности практически не уступают контроллерам шаговых двигателей.

Одним из главных преимуществ шаговых двигателей является возможность осуществлять точное позиционирование и регулировку скорости без датчика обратной связи. Это очень важно, так как такие датчики могут стоить намного больше самого двигателя. Однако это подходит только для систем, которые работают при малом ускорении и с относительно постоянной нагрузкой. В то же время системы с обратной связью способны работать с большими ускорениями и даже при переменном характере нагрузки. Если нагрузка шагового двигателя превысит его момент, то информация о положении ротора теряется и система требует базирования с помощью, например, концевого выключателя или другого датчика. Системы с обратной связью не имеют подобного недостатка.

При проектировании конкретных систем приходится делать выбор между сервомотором и шаговым двигателем. Когда требуется прецизионное позиционирование и точное управление скоростью, а требуемый момент и скорость не выходят за допустимые пределы, то шаговый двигатель является наиболее экономичным решением. Как и для обычных двигателей, для повышения момента может быть использован понижающий редуктор. Однако для шаговых двигателей редуктор не всегда подходит.

В отличие от коллекторных двигателей, у которых момент растет с увеличением скорости, шаговый двигатель имеет больший момент на низких скоростях. К тому же, шаговые двигатели имеют гораздо меньшую максимальную скорость по сравнению с коллекторными двигателями, что ограничивает максимальное передаточное число и, соответственно, увеличение момента с помощью редуктора. Готовые шаговые двигатели с редукторами хотя и существуют, однако являются экзотикой. Еще одним фактом, ограничивающим применение редуктора, является присущий ему люфт. Возможность получения низкой частоты вращения часто является причиной того, что разработчики, будучи не в состоянии спроектировать редуктор, применяют шаговые двигатели неоправданно часто. В то же время коллекторный двигатель имеет более высокую удельную мощность, низкую стоимость, простую схему управления, и вместе с одноступенчатым червячным редуктором он способен обеспечить тот же диапазон скоростей, что и шаговый двигатель. К тому же, при этом обеспечивается значительно больший момент. Приводы на основе коллекторных двигателей очень часто применяются в технике военного назначения, а это косвенно говорит о хороших параметрах и высокой надежности таких приводов. Да и в современной бытовой технике, автомобилях, промышленном оборудовании коллекторные двигатели распространены достаточно сильно. Тем не менее, для шаговых двигателей имеется своя, хотя и довольно узкая, сфера применения, где они незаменимы.

Виды шаговых двигателей:

· двигатели с переменным магнитным сопротивлением

· двигатели с постоянными магнитами

· гибридные двигатели

Определить тип двигателя можно даже на ощупь: при вращении вала обесточенного двигателя с постоянными магнитами (или гибридного) чувствуется переменное сопротивление вращению, двигатель вращается как бы щелчками. В то же время вал обесточенного двигателя с переменным магнитным сопротивлением вращается свободно. Гибридные двигатели являются дальнейшим усовершенствованием двигателей с постоянными магнитами и по способу управления ничем от них не отличаются.

Определить тип двигателя можно также по конфигурации обмоток. Двигатели с переменным магнитным сопротивлением обычно имеют три (реже четыре) обмотки с одним общим выводом. Двигатели с постоянными магнитами чаще всего имеют две независимые обмотки. Эти обмотки могут иметь отводы от середины. Иногда двигатели с постоянными магнитами имеют 4 раздельных обмотки. В шаговом двигателе вращающий момент создается магнитными потоками статора и ротора, которые соответствующим образом ориентированы друг относительно друга.

Статор изготовлен из материала с высокой магнитной проницаемостью и имеет несколько полюсов. Полюс можно определить как некоторую область намагниченного тела, где магнитное поле сконцентрировано. Полюса имеют как статор, так и ротор. Для уменьшения потерь на вихревые токи магнитопроводы собраны из отдельных пластин, подобно сердечнику трансформатора. Вращающий момент пропорционален величине магнитного поля, которая пропорциональна току в обмотке и количеству витков. Таким образом, момент зависит от параметров обмоток. Если хотя бы одна обмотка шагового двигателя запитана, ротор принимает определенное положение. Он будет находится в этом положении до тех пор, пока внешний приложенный момент не превысит некоторого значения, называемого моментом удержания. После этого ротор повернется и будет стараться принять одно из следующих положений равновесия.

Биполярные и униполярные шаговые двигатели
В зависимости от конфигурации обмоток двигатели делятся на биполярные и униполярные. Биполярный двигатель имеет одну обмотку в каждой фазе, которая для изменения направления магнитного поля должна переполюсовывается драйвером. Для такого типа двигателя требуется мостовой драйвер, или полумостовой с двухполярным питанием. Всего биполярный двигатель имеет две обмотки и, соответственно, четыре вывода.Униполярный двигатель также имеет одну обмотку в каждой фазе, но от середины обмотки сделан отвод. Это позволяет изменять направление магнитного поля, создаваемого обмоткой, простым переключением половинок обмотки. При этом существенно упрощается схема драйвера. Драйвер должен иметь только 4 простых ключа. Таким образом, в униполярном двигателе используется другой способ изменения направления магнитного поля.

Читать еще:  Matiz не ровно работает двигатель

Средние выводы обмоток могут быть объединены внутри двигателя, поэтому такой двигатель может иметь 5 или 6 выводов Иногда униполярные двигатели имеют раздельные 4 обмотки, по этой причине их ошибочно называют 4-х фазными двигателями. Каждая обмотка имеет отдельные выводы, поэтому всего выводов 8. При соответствующем соединении обмоток такой двигатель можно использовать как униполярный или как биполярный. Униполярный двигатель с двумя обмоткими и отводами тоже можно использовать в биполярном режиме, если отводы оставить неподключенными. В любом случае ток обмоток следует выбирать так, чтобы не превысить максимальной рассеиваемой мощности. Если сравнивать между собой биполярный и униполярный двигатели, то биполярный имеет более высокую удельную мощность. При одних и тех же размерах биполярные двигатели обеспечивают больший момент.

6-ти выводные шаговые двигатели

Для подключения 6-ти выводного шагового двигателя к классическому биполярному драйверу может быть выбран один из двух способов — униполярное либо биполярное подключение обмоток двигателя.

Униполярное подключение

Если требуется вращать двигатель на средних и высоких скоростях (из диапазона рабочих скоростей), лучший тип подключения — использовать центральный отвод. Электрические характеристики двигателя — ток обмотки, сопротивление обмотки, статический крутящий момент, индуктивность обмоток и др. — в этом случае равны данным, приведенным в каталоге.

Биполярное подключение

Если требуется вращать двигатель на низких скоростях (из диапазона рабочих скоростей), лучший тип подключения — биполярное. Электрические характеристики двигателя — ток обмотки, сопротивление обмотки, статический крутящий момент, индуктивность обмоток и др. — в этом случае равны данным, приведенным в каталоге. При таком типе подключения нужно уменьшить ток, подаваемый на обмотки двигателя в √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при последовательном включении обмоток требуемый ток — 1.4 А, то есть в 1.4 раза меньше. Это можно легко понять из следующих рассуждений. Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R — именно оно приведено в каталоге). При последовательном включении обмоток сопротивление объединенной обмотки возрастает в два раза (2R).

Потребляемая мощность при униполярном включении — Iуниполяр. 2 * R

При последовательном включении обмоток потребляемая мощность становится Iбиполяр. 2 * 2 * R

Потребляемая мощность не зависит от типа подключения, поэтому Iуниполяр. 2 * R = Iбиполяр. 2 * 2* R, откуда

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением ток, пропускаемого через обмотки. Но так как ток уменьшился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

8-ми выводные шаговые двигатели

Для подключения 8-ми выводного шагового двигателя (то есть двигателя с четырьмя обмотками) к классическому биполярному драйверу может быть выбран один из трех способов — униполярное, последовательное либо параллельное подключение обмоток двигателя.

Если требуется вращать двигатель на средних скоростях (из диапазона рабочих скоростей), лучший тип подключения — использовать лишь две из четырех обмоток.

Наиболее эффективно для низкоскоростного диапазона рабочих скоростей двигателя.

При таком типе подключения нужно уменьшить ток, подаваемый на обмотки двигателя в √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при последовательном включении обмоток требуемый ток — 1.4 А, то есть в 1.4 раза меньше.

Это можно легко понять из следующих рассуждений.

Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R — именно оно приведено в каталоге). При последовательном включении обмоток сопротивление объединенной обмотки возрастает в два раза (2R).

Потребляемая мощность при униполярном включении — Iуниполяр. 2 * R

При последовательном включении обмоток потребляемая мощность становится Iпослед. 2 * 2 * R

Потребляемая мощность не зависит от типа подключения, поэтому Iуниполяр. 2 * R = Iпослед. 2 * 2* R, откуда

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением ток, пропускаемого через обмотки. Но так как ток уменьшился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

Наиболее эффективно использование параллельного включения обмоток для высоких скоростей.

При таком типе подключения нужно увеличить ток, подаваемый на обмотки двигателя в √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при параллельном включении обмоток требуемый ток — 2.8 А, то есть в 1.4 раза больше.

Это можно легко понять из следующих рассуждений.

Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R — именно оно приведено в каталоге). При параллельном включении обмоток сопротивление объединенной обмотки уменьшаетсяв два раза (0.5 R).

Потребляемая мощность при униполярном включении — Iуниполяр. 2 * R

При параллельнном включении обмоток потребляемая мощность становится 0.5 * Iбиполяр. 2 * R

Потребляемая мощность не зависит от типа подключения, поэтому Iуниполяр. 2 * R = 0.5 * Iбиполяр. 2 * R, откуда Iбиполяр..= Iуниполяр. /√2, т.е.

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением величины тока, пропускаемого через обмотки. Но так как ток увеличился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

При выборе шагового двигателя одной из важнейших характеристик является его скоростные качества, то есть зависимость момента на валу от скорости вращения. Сравнить и оценить эту характеристику можно зная значения сопротивления и индуктивности обмоток выбираемого двигателя. Чем больше соотношение R/L тем быстрее нарастает ток в обмотках и тем большую скорость вращения можно достичь без существенного падения момента. Объясняется это тем, что э квивалентная схема представляет собой последовательно соединенные индуктивность и омическое сопротивление, возникающая в цепи ЭДС самоиндукции препятствует изменению тока в цепи, замедляя его возрастание, а также спад тока при размыкании цепи. Ток не может вырасти мгновенно до номинального значения, а следовательно, крутящий момент двигателя тоже нарастает не мгновенно, а по экспоненте. При увеличении скорости вращения не только увеличивается скорость коммутации обмоток, но также уменьшается время, на которое подается напряжение на обмотку. При критической скорости ток в обмотке двигателя еще не успевает вырасти до номинального значения, а напряжение с обмотки уже снимается. Происходит снижение крутящего момента, двигатель начинает пропускать шаги.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты