Шаговый двигатель принтера принцип работы - Автомобильный журнал
Arskama.ru

Автомобильный журнал
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Шаговый двигатель принтера принцип работы

Индукторный шаговый двигатель.

Индукторный шаговый двигатель.

Шаговый двигатель является одним из важнейших элементов любого печатающего устройства. Шаговые двигатели применяются в матричных, струйных и лазерных принтерах. Существует несколько типов шаговых двигателей и одним из самых широко применяемых является индукторный шаговый двигатель с самоподмагничиванием. Индукторный шаговый двигатель часто используют в приводах сканирующих устройств или для перемещения каретки матричных принтеров. Принцип действия всех шаговых двигателей основан на дискретном изменении состояний магнитного поля в рабочем зазоре двигателя за счет возбуждения тех или иных его обмоток. При перемещении магнитного поля статора, образованного током в обмотках управления (фазах) шагового двигателя, ротор дискретно перемещается вслед за магнитным полем со скоростью и дискретностью, определяемыми типом двигателя и его конструктивными особенностями. Обычно используются двигатели с четырехпроводной передачей. Угловой шаг таких двигателей =360°/(Z*n),

где Z — количество зубцов ротора,

n — количество фаз.

В печатающих устройствах нашли применение четырехфазные двигатели, поэтому формула для вычисления углового шага =90°/Z.

Четырехфазный индукторный шаговый двигатель с самоподмагничиванием состоит из статора с восемью полюсными выступами, вокруг которых уложена обмотка, соединенная в четыре фазы (рис. 1). На полюсах ротора имеются зубцы. Ротор представляет собой ферромагнитный пассивный зубчатый цилиндр. Причем зубцовое деление ротора равно зубцовому делению статора.

При возбуждении какого-либо полюса статора, которое происходит при протекании тока через две обмотки соседних полюсов (I1 и I2 на рис. 1), на этих полюсах возникает магнитный поток Ф имеющий направление, указанное на рис. 1.

В результате, ротор занимает такое положение, при котором его зубцы совпадают с зубцами этого полюса статора. При этом зубцы ротора относительно зубцов соседних полюсов оказываются сдвинутыми на % зубцового деления. При возбуждении следующего полюса ротор отрабатывает шаг, повернувшись на % зубцового деления. Благодаря такому устройству эти двигатели имеют очень малый угловой шаг (от 1° до 15°) и большое быстродействие по частоте (до 3-4 кГц) при сравнительно низких скоростях вращения. Самоподмагничивание у этих двигателей осуществляется за счет постоянной составляющей тока в фазах статора. Простота конструкции и схемы управления обусловили широкое применение этого типа двигателя.

Величина шага обратно пропорциональна числу зубцов ротора и числу фаз. Для получения малой величины шага следует увеличить число зубцов на роторе. Однако при этом возрастет диаметр ротора, увеличится его момент инерции и быстродействие падает. Также можно увеличивать число фаз, однако таким путем не идут, так как усложняется построение схемы управления.

Для четырехфазных шаговых двигателей следующие значения шага при различных значениях количества зубцов:

Z — количество зубцов,

ш — угловой шаг (табл. 1).

Очень часто в принтерах применяют двигатели с количеством зубцов 48, поэтому при расчете по формуле, приведенной выше можно получить значение углового шага = 1.86°. Значение углового шага некоторыми производителями двигателей указывается непосредственно на ярлыке двигателя.

Шаговый двигатель принтера принцип работы

Когда хочется чего-то более существенного чем просто помигать светодиодами, и когда усвоены основы работы с микроконтроллером можно переходить к более серьёзным проектам. Предлагаю научится управлять шаговым двигателем, той штукой, которая стоит во всех принтерах, копирах, дисководах, и многих других разнообразнейших устройствах. Шаговые двигатели делятся на два типа:
— униполярные шаговые двигатели,
— биполярные шаговые двигатели.

Отличатся немного по строению и по системе управления.
Униполярный шаговый двигатель, принципиальная схема показана на рис. 1

Рис. 1

У униполярного шагового двигателя есть 4-ре обмотки соединенные по схеме показанной на рис. 1
Принцип работы униполярного шагового двигателя следующий: поочередно на каждую из 4-х обмоток подается напряжение положительной полярности, в это время общий вывод соединен с отрицательным проводом питания. Получается за каждую коммутацию(подачу напряжения на одну из 4-х обмоток) ротор шагового двигателя смещается на один шаг, ширина этого шага зависит от конструкции самого шагового двигателя, для униполярного шагового двигателя показанного на рис. 2 и рис. 3 шаг составляет примерно:
22х8=176(шагов)
365/172=2,104 градуса.

Читать еще:  Вибрации на холодном бензиновом двигателе


рис. 2


рис. 3

Его я успешно выкурочил из древнего привода магнитных дисков размером 5,25 дюйма, кстати привод известной фирмы TEAC ))) Данный шаговый двигатель выполнял функцию перемещения магнитной головки по пазу в дискете, собственно через который и считывалась вся информация с магнитного диска.
Для управления этим шаговым двигателем при помощи микроконтроллера нам понадобится собрать силовой каскад, сам микроконтроллер просто сгорит, если подключить униполярный шаговый двигатель напрямую к его портам. В качестве силового каскада можно успешно применить 4 пары полевых транзистора из уже известной сборки IRF7105(схема показана на рис. 5),

Рис. 5
или четыре мощных биполярных транзистора или если у вас есть лишние деньги, можно воспользоваться драйвером мощной нагрузки, таким как микросхема L293 или L293DNE что практически одно и то же. Я пользовался именно драйвером L293DNE.

Принципиальная схема включения шагового двигателя через драйвер L293DNE:

Алгоритм управления униполярным шаговым двигателем очень простой, необходимо выполнять поочередную коммутацию четырех обмоток двигателя. То есть выдавать на четыре бита порта микроконтроллера последовательность типа:
1000
0100
0010
0001

Соответственно крутим поочередно обмотки A, B, C, D:
1000 — обмотка A
0100 — обмотка B
0010 — обмотка C
0001 — обмотка D

Данный вид коммутации называется «полношаговым режимом», то есть за каждую коммутацию происходит смещение ротора шагового двигателя на один целый шаг. Так же существует «полушаговый режим», коммутация обмоток при полушаговом режиме следующая:
1000 — 1-е пол шага обмотки А
1100 — 2-е пол шага обмотки А
0100 — 1-е пол шага обмотки B
0110 — 2-е пол шага обмотки B
0010 — .
0011 — .
0001 — .
1001 — 2-е пол шага обмотки D

Данный режим применяют в устройствах, где необходимо очень плавно изменять угол поворота ротора шагового двигателя, например в медицинских прибора, которые отвечают за равномерное и плавное введение в вену лекарства (шприцевые дозаторы) или в устройствах механической настройки, например радиоприемники с настройкой при помощи шагового двигателя (сейчас очень большая редкость).

Программа подходит для любого микроконтроллера AVR Attiny2313, Atmega8, Atmega16.
Итак, вот и сама программа (программа для полношагового режима):

Таким образом скорость вращения шагового двигателя будет замедлятся или ускорятся в зависимости от того, будут вы увеличивать (m=m+1;) или уменьшать (m=m-1;) время задержки между командами.

Хочу сказать что униполярные шаговые двигатели не очень мощные, то есть использовать их для перемещения предмета весом больше 40-80 грамм нет смысла, он просто не потянет. Тем более в полушаговом режиме. Для таких целей лучше всего применять шаговые двигатели из принтеров, те которые перемещают каретку с печатной головкой принтера.
Для экономичного управления униполярным шаговым двигателем необходимо отключать напряжение на обмотках во время простоя, то есть не давать обмотке шагового двигателя все время находится под напряжением, так как это приводит к нагреву самого шагового двигателя и соответственно к большой потере энергии (хотя конечно если преследуете цель обогрева помещения при помощи ШД тогда да 🙂 ). Максимальная скорость вращения ротора униполярного шагового двигателя не столь велика, её можно определить при помощи небольшого кусочка, который я разместил в самом низу программы. То есть для устройств требующих больших скоростей вращения униполярные шаговые двигатели не годятся.

Устройство шагового двигателя

Шаговый электродвигатель относится к виду электрических машин постоянного тока. Принцип действия шагового электродвигателя основан на способе преобразования импульсной электрической энергии в механическое дискретное перемещение.

Читать еще:  Чери фора вибрация двигателя почему

Шаговые электродвигатели классифицируются как бесколлекторные двигатели с высокой степенью надежности и большим сроком службы. Особенности этого типа электродвигателей делают их пригодными к эксплуатации даже в самых сложных производственных условиях.

Отличительной особенностью шаговых двигателей является большое значение крутящего момента на низких скоростях, в то время как в коллекторных двигателях значение крутящего момента возрастает только при увеличении скорости.

Конструкция шагового электродвигателя предполагает наличие более сложной схемы управления, обеспечивающей коммутацию обмоток, в сравнении с другими электродвигателями постоянного тока.

Шаговые электродвигатели подразделяются на три вида: с постоянными магнитами; с переменным магнитным сопротивлением; гибридные.

Двигатели с постоянными магнитами

Электродвигатели с постоянными магнитами включают в себя статор с обмотками и ротор, в конструкцию которого входят постоянные магниты.

Статор в таком электродвигателе имеет два противоположных полюса, на каждом из которых имеется независимая обмотка. При подаче электропитания в одну из обмоток ротор перемещается в положение, при котором его полюса располагаются напротив разноименных полюсов статора. Непрерывное вращение ротора достигается попеременным включением фаз.

Шаговые электродвигатели с постоянными магнитами, в силу конструктивных особенностей, подвержены влиянию обратной ЭДС, которая наводится в роторе и ограничивает скорость его вращения.

Высокая скорость вращения ротора возможна в электродвигателях, с переменным магнитным сопротивлением.

Двигатели с переменным магнитным сопротивлением

Статор шагового электродвигателя с переменным магнитным сопротивлением содержит несколько пар полюсов. Полюса каждой пары расположены напротив друг друга и имеют независимые одноименные обмотки. Ротор оборудован зубцами, сделанными из мягкого магнитного материала.

При подаче электропитания в одну из пар обмоток ротор перемещается в положение, при котором его зубцы располагаются напротив запитанных обмоток статора. При подаче электропитания на другую пару обмоток ротор перемещается в положение, при котором его зубцы располагаются напротив запитанной пары, и вновь замыкают магнитный поток. Непрерывное вращение ротора достигается попеременным включением фаз.

Гибридные шаговые двигатели

Гибридные шаговые электродвигатели имеют конструкцию, сочетающую в себе преимущества двух предыдущих типов электродвигателей. Гибридные электродвигатели являются более скоростными и обеспечивают шаг малой величины. Однако стоимость этих электродвигателей выше.

Ротор гибридного электродвигателя состоит из двух частей зубчатой формы, разделенных между собой цилиндрическим постоянным магнитом. Зубцы каждой составной части ротора являются одноименными полюсами: северными или южными. Угол поворота составных частей ротора относительно друг друга равен половине шагового угла зубцов.

Все зубчатые полюса ротора выполнены в виде пакетов пластин. Такая конструкция способствует снижению потерь, связанных с вихревыми токами.

Конструкция статора также содержит зубчатые полюсные наконечники для обеспечения нужного количества полюсов, эквивалентных роторным, при этом обмотками оборудованы только основные полюса.

Биполярные и униполярные шаговые двигатели

В зависимости от конфигурации обмоток шаговые электродвигатели могут быть биполярными и униполярными.

Биполярным называется электродвигатель, у которого каждая фаза оборудована только одной обмоткой, а переключение обмоток изменяет направление магнитного поля.

Униполярным называется электродвигатель, у которого каждая фаза также оборудована только одной обмоткой, но выводы сделаны от середины каждой обмотки. Переключение половинок обмотки изменяет направление магнитного поля.

Шаговыми электродвигатели оборудуются многие устройства: офисная техника (принтеры, факсы, сканеры и т.д), специальное промышленное оборудование, различные периферийные технические устройства.

Самодельный станок с ЧПУ

Введение

Точность станка 0.0025 мм на 1 шаг, но по факту (с учетом неточности изготовления узлов станка, зазоры в узлах, в паре винт- гайка) точность составляет 0.1мм. Станок без обратной связи, т.е. положение инструмента отслеживается программно, за точность перемещения отвечают шаговые двигатели.

Читать еще:  Хонда эйрвэйв какой двигатель

Станок подключается к компьютеру через LPT порт, работает под Windows 98 и XP.

Механическая часть
Электрика

Блок питания: 12в 3А – для питания шаговых двигателей и 5в 0.3А для питания микросхем контроллера.

Контроллер: Разработанный контроллер может обслуживать до 32 (в моей схеме 3) шаговых двигателей последовательно, т.е. одновременно может работать только один двигатель. Параллельная работа двигателей обеспечивается программно. Контроллер управления шаговыми двигателями собран на микросхемах 555TM7 серии (3шт). Не требует прошивки.

Электрическая схема контроллера:

Описание и назначение выводов разъема порта LPT:

выв.НазваниеНаправлениеОписание
1STROBEввод и выводустанавливается PC после завершения каждой передачи данных
2/9DO-D7вывод8 линий данных
10АСКвводустанавливается в «0» внешним устройством после приема байта
11BUSYвводустройство показывает, что оно занято, путем установки этой линии в «1»
12Paper outвводдля принтеров
13Selectвводустройство показывает, что оно готово, путем установки на этой линии «1»
14Autofeedввод и вывод
15Errorвводиндицирует об ошибке
16Initializeввод и вывод
17Select Inввод и вывод
18-25GroundGNDобщий провод

Для эксперимента был использован шаговый двигатель от старого 5,25-дюймов

8 бит идущих от LPT разделяем на две группы по 4бит: данные и управляющие. При получении сигнала одним из трех триггеров, данные записываются в триггер ТМ7 и соответственно поступают на драйвер шагового двигателя. При снятии с ТМ7 разрешающего сигнала данные в триггере сохраняются (триггер с защелкой) и т.д.

Биты LPT
1234567
данныеУправляющий сигнал –определяет на какой двигатель придет сигнал

Т.е. для подачи на второй двигатель сигнала 0101 необходимо подать разрешающий сигнал на второй ТМ7 т.е. выдать в порт LPT сигнал:

Биты LPT
1234567
111
Предаваемые данные на шаговый двигательДанные идут на 2 двигатель

В моей схеме 7 бит не используется т.к. применено 3 двигателя. На него можно повесить ключ включение главного двигателя (фреза или сверло).

Для подключения к схеме 32 двигателей необходимо на управляющие биты установить дешифратор 4бит=32 в десятичной системе.

Драйвер: Драйвер шагового двигателя (не путать с компьютерными драйверами) представляет собой 4х канальный усилитель или 4 ключа. Собран на 4х транзисторах КТ 917 (кт 972 лучше).

Также можно использовать серийные микросхемы (stepper motor driver), например ULN 2004 (9 ключей) на 0.6А.

Шаговые двигатели

Мне попались двигатели с 5 концами (униполярный см. рис.б) их подключение проще. Управление биполярным двигателем (а) сложнее, в настоящий момент ведется разработка и испытание драйвера для него.

Принцип работы: Рисуется в AutoCad рисунок только линиями (lines) , круги, полигинии, дуги не поддерживаются. Для прорисовки кругов необходимо их обвести маленькими линиями. Файл сохраняется в формате DXF. Запускается программа, открывается сохраненный файл. Рабочий инструмент (перо, сверло и т.п.) выставляется в «ноль» — вкладка «ручное перемещение»

В программе есть просмотр «программы (файла) обработки», оптимизация файла – сокращение холостых перемещений, задание режимов резания. Выбирается вид обработки: рисование, сверление, фрезерование, гравировка. Сверление происходит по точкам “Point” в файле DWG. Фрезерование почти не отличатся от рисования (только режимы). Гравировка это многократное повторение рисунка с постепенным углублением инструмента благодаря этому получена возможность гравировать по стали.

Программу управления самодельным станком с ЧПУ (управления шаговым двигателем) можно найти на сайте http://temport.by.ru/

Также возможна работа с файлами Sprint-Layout формата Gerber (RS274-X) или G-код. Т.е. рисовать и сверлить платы разработанные в программе Sprint-Layout. Можно использовать конвертированные (DXF) файлы из CorelDraw

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector