Устойчивость режима работы двигателя - Автомобильный журнал
Arskama.ru

Автомобильный журнал
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устойчивость режима работы двигателя

Условия устойчивости работы двигателя

При работе двигателя всегда возникают определенные возмущения режима работы (кратковременные колебания напряжения сети, случайные кратковременные изменения момента нагрузки на валу и так далее). Такие возмущения чаще всего бывают небольшими и кратковременными, однако при этом происходят, хотя также небольшие и кратковременные, нарушения равенства моментов установившегося режима работы [смотрите выражение (3) в статье «Общие сведения о двигателях постоянного тока»], вследствие чего возникает момент Mдин и изменяется скорость вращения.

Под устойчивостью работы двигателя понимается его способность вернуться к исходному, установившемуся режиму работы при малых возмущениях, когда действие этих возмущений прекратится. Иными словами, работа двигателя называется устойчивой, если бесконечно малые в пределе возмущения его работы вызывают лишь столь же малые изменения величин, характеризующих режим его работы, например скорости вращения, тока якоря и так далее. Двигатель неустойчив в работе, если подобные малые возмущения приводят к большим изменениям режима работы. При неустойчивой работе небольшие кратковременные возмущения вызывают либо непрерывное изменение режима (n, Iа и так далее) в каком-либо одном направлении, либо приводят к колебательному режиму с возрастанием амплитуд колебаний n,Iа и так далее. Естественно, что в условиях эксплуатации необходимо обеспечить устойчивый режим работы двигателя. При неустойчивости двигателя нормальная его работа невозможна, и обычно происходит авария.

Неустойчивая работа может быть также и у генераторов. В статье «Параллельная работа генераторов постоянного тока» была рассмотрена неустойчивость параллельной работы генераторов смешанного возбуждения при отсутствии уравнительного провода. Режим самовозбуждения генераторов постоянного тока (смотрите статью «Генераторы параллельного возбуждения») также, в сущности, представляет собой неустойчивый режим работы, так как iв и U непрерывно изменяются. Работагенератора параллельного возбуждения при Rн = Rв.кр также неустойчива, так как если несколько изменить величину Rв, то напряжение U значительно изменится, то есть возрастет до некоторого конечного значения или упадет почти до нуля.

Устойчивость работы двигателя зависит от вида его механической характеристики M = f(n) и от вида зависимости момента сопротивления на валу от скорости вращения Mст = f(n). Вид последней зависимости определяется свойствами рабочей машины, приводимой в движение двигателем. Например, у металлорежущих станков, если установка резца не изменяется, Mст ≈ const, то есть Mстне зависит от скорости вращения, а у вентиляторов и насосов Mстnв квадрате.

Рисунок 1. Устойчивый (а) и неустойчивый (б) режим работы двигателя

На рисунке 1, а и б изображены два характерных случая работы двигателя. Установившемуся режиму работы (M = Mст) со скоростью вращения nсоответствует точка пересечения указанных двух характеристик.

Если зависимости M = f(n), и Mст = f(n) имеют вид, изображенный на рисунке 1, а, то при случайном увеличении n в результате возмущения на Δnтормозной момент Mст станет больше движущего M(Mст > M) и поэтому двигатель будет затормаживаться, что заставит ротор вернуться к исходной скорости n. Точно так же, если в результате возмущения скорость двигателя уменьшится на Δn, то будет Mст

(2)

что и является признаком, или критерием, устойчивости работы двигателя.

При зависимостях M = f(n) и Mст = f(n) вида рисунка 1, б работа неустойчива. Действительно, при увеличении n от n = n до n = n + Δn будет M > Mст, возникнет избыток движущего момента, скоростьn начнет нарастать, причем избыточный момент MMст увеличится еще больше, n еще возрастет и так далее. Если в результате возмущения n = n – Δn, то M

Дата добавления: 2015-04-18 ; просмотров: 4 ; Нарушение авторских прав

Устойчивость режима работы и запас крутящего момента двигателя

Крутящий момент, развиваемый двигателем при установившемся режиме, равен суммарному моменту сопротивлений движению автомобиля. В условиях эксплуатации момент сопротивления зависит от ряда факторов (профиля дороги и ее состояния, изменения сопротивления воздуха и т. п.) и может меняться в широких пределах. Для сохранения устойчивого режима движения важно, чтобы при изменении сопротивления движению равенство между моментом двигателя и моментом сопротивления восстанавливалось при возможно малом изменении скоростного режима двигателя.

На рис. 130 приведены кривые I/// эффективных крутящих моментов трех двигателей, соответствующие внешним скоростным характеристикам. На номинальном режиме все двигатели имеют одинаковый крутящий момент.

а тре-

тий двигатель без переключения передачи не сможет преодолеть этот момент.

, а второй двигатель без переключения передачи не сможет преодолеть этот момент.

Из рис. 130 видно, что если кривая крутящего момента имеет более крутой подъем, то при большем изменении сопротивления движению автомобиля частота вращения меняется, но двигатель

Читать еще:  Как установить двигатель пылесоса

б состоянии на данной передаче преодолеть увеличенные сопротивления.

в зависимости от сопротивления движению автомобиля у дизеля не зависит от нагрузки, так как внешняя и частичная характеристики у него протекают почти одинаково.

Устойчивость режима автомобильного двигателя оценивают по запасу крутящего момента, который определяется отношением максимального крутящего момента к крутящему моменту, развиваемому двигателем на номинальном режиме; это отношение называют коэффициентом приспособляемости:

Крутящий момент двигателя пропорционален среднему эффективному давлению, поэтому

Частота вращения (п)метах, при которой достигается максимальный крутящий момент, является параметром, показывающим, в каком диапазоне изменения скоростного режима двигатель работает устойчиво по внешней характеристике. Этот диапазон оценивается величиной

у дизелей необходимо применять специальное корректирующее устройство (см. гл. XIV), увеличивающее цикловую подачу топлива при снижении частоты вращения.

Устойчивость режима работы двигателя

Д-36 — трёхвальный, с высокой степенью двухконтурности (5,34) Турбовентиляторный двигатель модульной конструкции [1] [2] .

Существуют серии двигателя 1, 1А, 2А, 3А, 4А [1] .

Двигатель Д-36 устанавливается на пассажирских самолетах Як-42, на транспортных самолетах Ан-72 и Ан-74, экранопланы «Комета-2» и «Вихрь-2» [1] [2] .

Производится на ОАО «Мотор Сич» (г. Запорожье). Серийное производство начато в 1977 году.

Содержание

  • 1 Конструкция
  • 2 Конструкция модулей
  • 3 Примечания
  • 4 Литература
  • 5 Ссылки

Конструкция [ править | править код ]

Двигатель — трёхвальный, состоит из ротора вентилятора и роторов низкого и высокого давления. Каждый ротор опирается на два подшипника и связан с другими только газодинамической связью. Вентилятор — сверхзвуковой, создающий основную долю тяги на малых и средних высотах, приводится 3-ступенчатой турбиной. Компрессор низкого давления (КНД) — околозвуковой, 6-ступенчатый, высокого давления (КВД) — дозвуковой, 7-ступенчатый, приводятся КНД и КВД одноступенчатыми турбинами (ТНД и ТВД соответственно). КНД расположен в передней части двигателя за вентилятором, КВД — за промежуточным корпусом.

Для обеспечения газодинамической устойчивости, настройки режимов работы компрессоров и согласования работы каскадов двигателя в КВД и КНД предусмотрены поворотные лопатки входных направляющих аппаратов (ВНА), регулируемые при доводке двигателя на стенде, а для обеспечения устойчивости на запуске и при малой частоте вращения роторов — клапаны перепуска воздуха (КПВ) за КНД и КВД. Для обеспечения возможности осмотра проточной части в корпусах компрессоров выполнены смотровые окна, закрытые заглушками с цанговыми фиксаторами.

Двигатель выполнен по модульной схеме, состоит из двенадцати модулей:

  • ротор вентилятора;
  • спрямляющий аппарат вентилятора;
  • вал вентилятора;
  • КНД;
  • промежуточный корпус с КВД;
  • коробка приводов;
  • камера сгорания;
  • ротор ТВД;
  • корпус опор турбины;
  • ротор ТНД;
  • турбина вентилятора;
  • задняя опора.

На двигателе размещены следующие агрегаты:

  • блок топливных насосов агрегат 934 с центробежной ступенью низкого давления (ННД) и шестеренчатой ступенью высокого давления (НВД);
  • топливно-масляный агрегат (ТМА);
  • датчик расхода (ДР);
  • топливный регулятор агрегат 935;
  • электромагнитный клапан пускового топлива (клапан ПТ);
  • коллектор пускового топлива (коллектор ПТ);
  • топливный коллектор;
  • датчик давления (ДД);
  • 24 форсунки рабочего топлива (РФ)

С каждым двигателем работает электронная система управления ЭСУ-2-3. Система, по поступающей от датчиков ДТА-10, Т-80, БСКТ-220 информации в электронный блок, работающий совместно с топливным регулятором — агрегатом 935 и блоком топливных насосов — агрегатом 934, предохраняет двигатель от возникновения режимов работы с превышением максимально допустимых значений частот вращения роторов и температуры газов за турбиной.

Конструкция модулей [ править | править код ]

Компрессор низкого давления состоит из переднего корпуса с ВНА КНД, ротора, статора, клапанов перепуска воздуха и подшипникового узла передней опоры ротора. Шарикоподшипник передней опоры установлен на масляном демпфере.

Передний корпус КНД — литой, состоящий из наружного и внутреннего колец, соединённых между собой восемью обтекаемыми стойками, образующей воздушный тракт на входе в компрессор и осуществляет силовую связь передней опоры компрессора низкого давления (КНД) с корпусными деталями двигателя. К переднему фланцу наружного кольца переднего корпуса крепится проставка, служащая для крепления ПЗУ (пылезащитное устройство) на входе в двигатель. К заднему фланцу наружного кольца переднего корпуса крепится наружное кольцо (входного направляющего аппарата) ВНА КНД, в котором установлены лопатки ВНА КНД.

Ротор КНД — барабанно-дисковой конструкции, состоит из следующих основных частей:

  • рабочего колеса 1 ступени;
  • рабочего колеса 2 ступени;
  • рабочего колеса 3 ступени;
  • сварной секции рабочих колёс 4, 5 и 6 ступеней;
  • переднего вала;
  • заднего вала;
  • переднего лабиринта;
  • заднего лабиринта с зубчатым венцом, являющимся индуктором для датчика замера частоты вращения ротора низкого давления бесконтактым способом.

Рабочие колёса 1, 2, 3 ступеней и секция 4, 5, 6 ступеней соединяются между собой призонными болтами. К переднему фланцу сварной секции ротора крепится передний вал ротора. На валу смонтированы детали передней опоры ротора низкого давления.

Читать еще:  Черный дым неровная работа двигателя

К диску шестой ступени крепится задний вал. Хвостовик вала опирается на роликоподшипник в корпусе опор турбины и передаёт крутящий момент ротору от турбины низкого давления.

Компрессор высокого давления состоит из входного направляющего аппарата (ВНА), ротора, статора, клапанов перепуска воздуха с кожухами и подшипникового узла передней опоры ротора высокого давления. ВНА расположен в передней части КВД. Консольные лопатки ВНА с жёстко прикреплёнными к их цапфам рычагами помещены в разъёмное кольцо, которое крепится к промежуточному корпусу. Конструкция ВНА позволяет производить регулировку углов установки лопаток на собранном неработающем двигателе в стендовых условиях. Ротор КВД — семиступенчатый, барабанно-дисковой конструкции состоит из секции ротора 1-5 ступеней, рабочих колёс шестой и седьмой ступеней, проставки, переднего вала и заднего вала. Секция ротора 1-5 ступеней, рабочее колесо шестой ступени, проставка и рабочее колесо седьмой ступени, передний и задний валы крепятся между собой болтами. Передний вал крепится фланцем к диску шестой ступени и проставке, а хвостовиком опирается на шарикоподшипник передней опоры ротора. На переднем валу установлены детали передней опоры ротора и ведущая шестерня для привода агрегатов двигателя.

Задний вал крепится передним фланцем к диску седьмой ступени и проставке. Каждое рабочее колесо состоит из диска и рабочих лопаток, установленных в ободе диска с помощью замков типа «ласточкин хвост». От осевых перемещений рабочие лопатки фиксируются пластинчатыми замками.

Статор КВД состоит из корпуса, в котором установлены шесть венцов направляющих аппаратов и семь рабочих колец. Корпус КВД — цельный, с двумя фланцами по торцам. На переднем фланце, которым корпус крепится к промежуточному корпусу, выполнены отверстия под шпильки крепления, и одно отверстие вверху, в вертикальной плоскости для штифта, фиксирующего угловое положение КВД относительно промежуточного корпуса. На заднем фланце выполнен ряд отверстий под винты крепления к корпусу камеры сгорания, и одно отверстие, в которое запрессован штифт, фиксирующий окружное положение набора рабочих колец пятой, шестой и седьмой ступеней, направляющих аппаратов четвёртой, пятой и шестой ступеней и корпуса камеры сгорания.

Рабочие кольца всех ступеней цельные, направляющие аппараты всех ступеней имеют разъёмы в диаметральных плоскостях. К внутренним кольцам направляющих аппаратов приварены по два лабиринтных кольца межступенчатых воздушных уплотнений. Рабочие кольца и лабиринтные кольца направляющих аппаратов имеют мягкие, легко прирабатываемые покрытия.

Передняя опора ротора — шариковый, радиально-упорный подшипник с разрезной внутренней обоймой. Наружная обойма подшипника установлена в упругом стакане типа «беличье колесо» с жёстким ограничителем хода для демпфирования колебаний ротора. Фланец упругого стакана крепится к промежуточному корпусу. Смазка шарикоподшипника осуществляется тремя форсунками, установленными на корпусе центрального привода. Проникновению масла в полость ротора препятствуют два контактных уплотнения и одно лабиринтное. Камера сгорания двигателя кольцевого типа, прямоточная. Предназначена для превращения химической энергии топлива в тепловую и подвода тепла к рабочему телу (воздуху).

Камера сгорания расположена между КВД и сопловым аппаратом турбины высокого давления, состоит из корпуса, диффузора со спрямляющим аппаратом ступени КВД и жаровой трубы. Камера сгорания диффузором сцентрирована по рабочему кольцу ступени КВД и соединена передним фланцем корпуса с помощью болтового соединения. К сопловому аппарату ТВД и статору ТНД камера сгорания закреплена задним фланцем корпуса с помощью болтового соединения, в котором часть болтов выполнена призонными. Диффузор со спрямляющим аппаратом ступени КВД установлен в корпусе камеры сгорания и закреплен на его переднем фланце. Диффузор состоит из наружной и внутренней оболочек, соединенных между собой спрямляющими лопатками.

Жаровая труба кольцевого типа подвешена в кольцевом канале корпуса камеры сгорания на полых втулках, окружающих рабочие топливные форсунки и фиксирующихся по отверстиям в обтекателе. Своим наружным и внутренним кожухами жаровая труба опирается на сопловой аппарат ТВД.

Турбина — осевая, реактивная, пятиступенчатая. От первой ступени приводится КВД, от второй — КНД, от 3-5 ступеней приводится вентилятор.

Передняя опора — шариковый, радиально-упорный подшипник с разрезной внутренней обоймой. Наружная обойма установлена в стакане типа «беличье колесо», поверх его одет корпус опоры. Между корпусом опоры и упругим стаканом предусмотрена замкнутая полость. ограниченная маслоуплотнительными кольцами, которая заполняется маслом, образуя масляный демпфер во время работы двигателя. Задняя опора каскада низкого давления — роликоподшипник, монтируется в стакане ТНД. Передняя опора каскада высокого давления — шариковый, радиально-упорный подшипник с разрезной внутренней обоймой. Наружная обойма установлена в стакане типа «беличье колесо», с жестким ограничителем хода (нелинейно-упругая опора). Задний роликовый подшипник на масляном демпфере. Задние подшипники каскада НД и ВД сведены в одну смазочную полость, которая находится за рабочим колесом ТНД.

  • Чрезвычайная тяга на уровне моря при МСА — 6500 кгс
  • Удельный расход топлива — 0,63 кг на кгс в час
  • Крейсерский режим на высоте 8 км, при скорости 0,75 Маха — 1600 кгс
  • Масса — 1124 кг
Читать еще:  Что такое башмак в двигателе газели

5.8. Устойчивость работы асинхронного двигателя

Под устойчивостью работы электродвигателя понимают способность двигателя восстанавливать установившуюся частоту вращения при кратковременных возмущениях (изменения нагрузки, напряжения питающей сети и т. д.).

Электромагнитный момент двигателя М , который является вращающим, уравновешивает тормозящие моменты: момент M 0 , соответствующий потерям холостого хода ( p мх , p мг , p д , p эл0 ), покрываемым за счет механической мощности; M 2 – момент нагрузки на валу, создаваемый рабочей машиной или механизмом; M дин – динамический момент, зависящий от момента инерции вращающихся масс J и ускорения ротора dΩ/d t ;

М = М 0 + М 2 + М дин .

5. Асинхронные машины

Обозначив статический момент сопротивления M c = M 0 + M 2 , получим

При M = M c ускорение ротора

d Ω d t = ( M − M с ) J = 0 ,

т. е. ротор вращается с установившейся частотой. Если M > M c , ротор ускоряется, а при M M c – замедляется.

Устойчивость зависит от конкретных условий, при которых работает электродвигатель, в частности от формы механических характеристик двигателя и приводимого им во вращение производственного механизма.

Типичные механические характеристики производственных механизмов приведены на рис. 5.21, а. Независимость статического момента от частоты вращения ( M c = const, кривая 1) характеризует грузоподъемные механизмы (лифты, краны, лебедки и т. д.). У вентиляторов, центробежных насосов, гребных винтов нагрузочный момент пропорционален (кривая 2) второй степени частоты вращения ( M c = cn 2 ). Эту характеристику называют вентиляторной.

Тяговый электропривод, как правило, имеет характеристику, соответствующую уравнению M c = c/n (кривая 3). Большое трение в состоянии покоя и при малых частотах вращения характерно для бетономешалок и шаровых мельниц. В таких механизмах при увеличении частоты вращения нагрузочный момент падает (кривая 4).

Рис. 5.21. Механические характеристики некоторых механизмов ( а ) и графики для определения статической устойчивости асинхронного двигателя ( б )

5. Асинхронные машины

Условия устойчивой работы рассмотрим на примере работы двигателя совместно с механизмом, у которого нагрузочный момент M c падает при увеличении частоты вращения (рис. 5.21, б ).

Пусть двигатель работает в режиме, соответствующем точке b , и развивает момент M = M c при s = s b . Если со стороны механизма момент увеличится до М с + М 1 = М с ′ , то частота вращения двигателя замедлится,

а скольжение увеличится до s = s b ′ . При этом возрастут ЭДС E 2 s = s E 20 ,

ток в роторе I 2 = r 2 sE + 20 j x 2 и электромагнитный момент до значения M′.

Двигатель войдет в новое равновесное состояние, работая с повышенным моментом и скольжением (точка b ′ ) .

При уменьшении статического момента до значения, соответствующего точке с , под действием положительного динамического момента M j = M – M c , что следует из формулы (5.109), частота вращения увеличится, уменьшится скольжение и ЭДС, а следовательно, ток ротора и электромагнитный момент – до значения M′′ = M c .

Изменение момента на валу двигателя, работающего в режиме, соответствующем точке а (рис. 5.21, б ), неизбежно приведет к остановке двигателя (если момент M c увеличить) или значительному увеличению частоты вращения и уменьшению скольжения до s = s c (если момент нагрузки уменьшить).

Таким образом, асинхронный двигатель при работе на части M 0 – M кр механической характеристики обладает свойством внутреннего саморегулирования, благодаря которому его вращающий момент автоматически регулируется по закону M = M c . Это регулирование осуществляется за счет увеличения или уменьшения частоты вращения ротора n , т. е. система регулирования является статической.

Сравнивая условия работы двигателя в точках а и b , делаем вывод, что работа двигателя устойчивая, если при увеличении частоты вращения n статический момент M c уменьшается медленнее, чем электромагнитный

момент двигателя M :

d M d n d M с d n .

Практически условие (5.111) является необходимым, но недостаточным. При резком изменении режима работы двигателя, работающего при скольжениях, близких к s кр , перегрузка двигателя может привести к его останову при M с > M m , поэтому максимальный момент называют иногда оп-

Повышению устойчивости асинхронного двигателя способствует увеличение его максимального момента (кратности максимального момента в соответствии с выражением (5.93) или его перегрузочной способно-

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector