Arskama.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В чем измеряется расход воздуха двигателя

Расходомер воздуха

Экологические требования к современным двигателям внутреннего сгорания предполагают поддержание определенного (стехиометрического) соотношения воздуха и топлива в топливно-воздушной смеси на всех режимах работы. Только в этом случае каталитический нейтрализатор полностью удаляет вредные вещества в отработавших газах.

Для поддержания стехиометрического соотношения компонентов топливно-воздушной смеси требуется точная информация о количестве (расходе) всасываемого воздуха, которую предоставляет расходомер воздуха. Мерой расхода может выступать как объем, так и масса всасываемого воздуха. В зависимости от этого различают два способа определения расхода воздуха: механический и тепловой.

Механический способ основан на измерении объема воздуха пропорционального перемещению заслонки. Тепловой способ предполагает измерение массы воздуха в соответствии с изменением температуры чувствительного элемента.

Расходомер воздуха устанавливается во впускной системе между воздушным фильтром и дроссельной заслонкой двигателя. Ведущим производителем расходомеров воздуха является фирма Bosch.

Механический расходомер воздуха

Механический расходомер воздуха использовался в системах распределенного впрыска Jetronic, а также объединенных системах впрыска и зажигания. В системе K-Jetronic расходомер воздуха обеспечивает количественное регулирование топливно-воздушной смеси и представляет собой напорный диск, механически соединенный с плунжером дозатора-распределителя.

В системе KE-Jetronic в механическую схему расходомера воздуха включен элемент электронного управления – потенциометр. Более совершенный механический расходомер устанавливался в системе L-Jetronic.

Конструктивно механический расходомер включает корпус с демпфирующей камерой, измерительную заслонку, возвратную пружину, демпфирующую заслонку, потенциометр и обводный канал с винтом качества.

Принцип работы расходомера воздуха построен на перемещении измерительной заслонки пропорционально величине потока воздуха. Измерительная заслонка, демпфирующая заслонка и потенциометр размещены на одной оси, обеспечивающей прямую связь между перемещением заслонки и изменением сопротивления потенциометра.

Конструктивно потенциометр выполнен в виде керамической подложки, на которую нанесены резисторные дорожки. К дорожкам прижат ползунок потенциометра. На потенциометр подается напряжение, изменяющееся в соответствии с сопротивлением. Изменение напряжения учитывается электронным блоком управления как объемная характеристика всасываемого воздуха. Для корректировки показаний расходомера в систему управления включен датчик температуры входящего воздуха.

В настоящее время механические расходомеры на двигатели внутреннего сгорания не устанавливаются.

Термоанемометрический расходомер воздуха

Более совершенными являются расходомеры воздуха, построенные на тепловом способе определения массового расхода воздуха, т. н. термоанемометрические расходомеры воздуха (от «анемо» — ветер). Они не имеют подвижных механических частей, характеризуются высоким быстродействием, точностью и в силу особенности конструкции не зависят от температуры воздуха.

Термоанемометрический расходомер воздуха (другое наименование – датчик массового расхода воздуха, ДМРВ) используется в современных системах впрыска бензиновых и дизельных двигателей, в т.ч. в системе непосредственного впрыска топлива. Конструктивно расходомер воздуха включен в систему управления двигателем. В ряде систем управления двигателем расходомер воздуха не используется, а его функции выполняет датчик давления воздуха во впускном трубопроводе.

В зависимости от конструкции чувствительного элемента различают следующие виды термоанемометрических расходомеров:

  • проволочный (Hot Wire MAF Sensor);
  • пленочный (Hot Film Air Flow Sensor, HFM).

Основой проволочного термоанемометрического расходомера воздуха является чувствительный элемент – платиновая нагреваемая нить. Работа расходомера построена на поддержании постоянной температуры платиновой нити за счет нагрева электрическим током.

При движении потока воздуха через датчик чувствительный элемент охлаждается. Терморезистор увеличивает ток нагрева нити. Преобразователь напряжения преобразует изменение тока нагрева чувствительного элемента в выходное напряжение. Между выходным напряжением и массовым расходом воздуха существует нелинейная зависимость, которая учитывается блоком управления двигателем.

Для предотвращения загрязнения чувствительного элемента в работе проволочного расходомера предусмотрен режим самоочистки, при котором на неработающем двигателе платиновая нить кратковременно нагревается до температуры 1000°С.

Необходимо отметить, что в ходе эксплуатации расходомера толщина платиновой нити уменьшается, что приводит к снижению точности измерений.

Данного недостатка лишен пленочный расходомер воздуха, который пришел на смену проволочного датчика. Принцип действия пленочного расходомера аналогичен проволочному ДМРВ. Основное отличие заключается в конструкции чувствительного элемента.

Чувствительный элемент пленочного расходомера воздуха представляет собой кристалл кремния, на который нанесено несколько тонких платиновых слоев – резисторов: нагревательного резистора, двух терморезисторов, резистора датчика температуры воздуха.

Чувствительный элемент расположен в специальном воздушном канале, воздух в который поступает за счет разряжения. Высокая скорость потока предотвращает попадание в канал крупных частиц грязи и загрязнение чувствительного элемента. Конструкция воздушного канала позволяет определять массу как прямого, так и обратного (отраженного от закрытых клапанов) потока воздуха, что увеличивает точность измерения.

Нагревательный резистор поддерживает определенную температуру чувствительного элемента. По разнице температур на терморезисторах определяется масса всасываемого воздуха и направление воздушного потока. Выходным аналоговым сигналом расходомера является напряжение постоянного тока.

Вместо аналогового сигнала отдельные конструкции датчиков массового расхода воздуха генерируют цифровой сигнал, являющийся в системах управления более предпочтительным (не зависит от срока эксплуатации устройства и характеристик электрической цепи).

Сигналы пленочного расходомера используется блоком управления двигателем для определения следующих параметров:

Системы измерения массового расхода воздуха

Измерение мгновенного расхода воздуха

Для автомобильных двигателей важнейшей проблемой при дозировании топлива является замер мгновенных значений расхода при неустановившихся режимах и особенно во время разгона с целью введения соответствующей коррекции.

Существуют три основных способа замера расхода воздуха:

по косвенным показателям (давление и температура воздуха во впускном трубопроводе, угол открытия дроссельной заслонки, частота вращения коленчатого вала и др.), поданным замера объема и температуры входящего воздуха и, наконец, по определению массового расхода воздуха.

Способ определения расхода воздуха по абсолютному давлению и температуре воздуха во впускном трубопроводе нашол широкое распространение в двигателях с центральным впрыскиванием и на части модификации двигателей с распределенным впрыскиванием топлива. Широкое распространение получили интегральные датчики, в которых используется пьезорезисторный эффект. Датчик имеет тонкую кремниевую пластину, на которой сформирован мостик сопротивления, состоящий из радиальных терморезисторов. ориентированных во взаимно перпендикулярных направлениях. При прогибе мембраны сопротивление радиальных резисторов возрастает, а тангенциальных — уменьшается. При изменении давления в трубопроводе напряжение в цепи датчика меняется. Кроме того, предусмотрено введение температурной компенсации в выходной сигнал.

Читать еще:  Устройство запуска двигателя виды

Способ замера воздуха по перемещению подвижного элемента в его потоке получил широкое распространение на европейских автомобилях в 80-е годы в системах управления К и KE-Jеtronic. На впускной системе установлен диск, перемещающийся в диффузоре. При этом в зависимости от расхода воздуха изменяется кольцевое проходное сечение межту диском и диффузором. В нижней части диффузора имеется расширяющийся конус для пропуска газов при обратных вспышках во впускном трубопроводе. У верхней части рычага диска расположена опорная поверхность, в которую упирается регулировочный винт состава смеси, расположенный в промежуточном рычаге. Этот рычаг перемещает плунжер в дозаторе топлива. На рычаге диска установлен противовес, уравновешивающий массы плеча рычага диска, промежуточного рычага и плунжера. В дозаторе топлива имеются дифференциальные камеры (по числу цилиндров). Каждая дифференциальная камера разделена мембраной па две полости. К первичным камерам топливо подводится от фильтра под постоянным давлением (500 кПа), поддерживаемое регулятором, расположенным в нижней части дозатора. Мембранный механизм с пружиной обеспечивает постоянный перепад давлений (10 кПа) между верхней камерой и трубкой, подающей топливо к форсунке, независимо от количества впрыскиваемого топлива. Форсунки систем К и KE-Jetronic имеют постоянно открытое во время работы дозирующее сечение. Регулирование производится изменением давления топлива (от 300 кПа при минимальной подаче до 500 кПа при полной нагрузке) путем перемещения плунжера, рабочая кромка которого устанавливает необходимое проходное сечение в зависимости от расхода воздуха. Равномерность подачи топлива по цилиндрам достигается перемещением упоров пружин в дифференциальных камерах при помощи регулировочных винтов. Такого рода работы проводятся на специальных стендах. При неработающем двигателе упор диска находится на пластинчатой пружине определяющей исходное положение диска. Сверху и снизу имеются эластичные ограничители его хода (верхний для максимального расхода воздуха, нижний ограничивает ход при обратной вспышке смеси во впускном трубопроводе).


K-Jetronic

1. топливный насос
2. аккумулятор топлива
3. топливный фильтр
4. регулятор управляющего давления
5. форсунка впрыска
6. пусковая форсунка
7. дозатор-распределитель топлива
8. расходомер воздуха
9. термореле
10. клапан добавочного воздуха

Воздушные расходомеры – приборы для измерения расхода воздуха

Выбор расходомера воздуха является распространенной задачей для большинства предприятий различной отраслевой направленности. Существует несколько вариаций воздушных расходомеров.

Модели приборов и аналоги

В зависимости от специфики производства, при выборе расходомера, к нему могут предъявляться различные требования. В зависимости от характера участка технологического процесса и параметров самой рабочей среды, выбор приборов осуществляется из доступного ассортимента расходомеров, с отличающимися друг от друга свойствами, ценой, качеством работы и характеристиками.

Список моделей промышленных расходомеров воздуха и краткие характеристики к ним:

МодельТипИзмеряемая средаТипоразмер трубопровода (диаметр условного прохода)ТемператураОсобенности
H-series 1000/1500 PSI
РотаметрГаз, воздух, пар6…76 мм-29…+116ºС
(опционально до +260ºС)
Возможность использовать в агрессивной и опасной среде
SL5201
КалориметрическийГаз, воздухот 23 мм-10…50°СДля применения в системах
вентиляции в автоматизации зданий
SD-series
Термоанемо-
метрический
Газ, сжатый воздух15…200 мм0…60°СВозможна работа с малыми
скоростями потока (при дозировании газов)

Предлагаемое оборудование, может применяться для измерения расхода пара, газов (включая агрессивные газы) и измерения расхода сжатого воздуха. При выборе конкретной модели расходомера необходимо исходить из требований, предъявляемых регламентом производства.

Как купить расходомер воздуха или узнать его цену

Чтобы определиться с моделью расходомеров воздуха, закажите консультацию инженера. Наш специалист свяжется с вами в течение одного рабочего дня, проведет консультацию, рассчитает цену на прибор или вышлет прайс-лист, ответит на все вопросы, а также осуществит продажу приборов.

Достоинства и преимущества расходомеров воздуха

Термоанемометрические расходомеры серии SD погружного и наружного типа, обладают рядом преимуществ, которые позволяют использовать датчики во многих отраслях промышленности для измерения количества проходящего газа через трубы. Калориметрический расходомер благодаря своим характеристикам и возможностям может применятся при малых расходах газа.

Для точного показания при скорости потока измеряемого воздуха или газа применяется калориметрический датчик SL5201. Его отличительной особенностью является компактность и отсутствие движущихся механических деталей, позволяющих использовать датчик на большинстве современных промышленных предприятий. Чувствительный титановый зонд гарантирует точную работу сенсора

Ротаметры Hedland H-series 1500 PSI используются для измерения воздуха и коррозийных газов. Особенностью прибора является возможность использовать его для измерения расхода воздуха в опасных условиях, а также коррозийных газов. Особенности конструктивного исполнения ротаметрического расходомера наделяют его стойкостью к механическому воздействию, ударам и вибрациям. Устройство работает автономно и не требует внешнего питания, однако это исключает возможность интеграции прибора в АСУ. При этом необходимо визуальное наблюдение за прибором для получения информации о расходе воздуха.

Прибор корректно работает при высоких температурах измеряемой среды (до +260°C). Расходомер Hedland H-series 1500 PSI станет оптимальным выбором для малых и средних предприятий с ограниченным бюджетом. Прибор прост в эксплуатации и обслуживании, легко устанавливается на любом участке трубопровода.

Принцип работы расходомеров воздуха

Расходомер состоит из датчика измерения расхода воздуха и электронного логического устройства. Датчик состоит из двух чувствительных элементов – тела обтекания и пьезосенсора, которые помещаются внутрь трубопровода. Тело обтекания находится на пути потока воздуха (газа). Проходя через него, поток воздуха образует дорожку завихрений. Частота завихрений зависит, от объемного количества и интенсивности потока воздуха. Расходомер оснащен пьезосенсором, который реагирует на изменения потока воздуха, установленный за телом обтекания фиксирует эти завихрения и передает сигнал на электронику. Далее электроника проводит математические операции и выводит на дисплей расходомера текущий расход воздуха.

Принцип работы ротаметрического индикатора расхода потока воздуха Hedland H-series 1500 PSI довольно простой. Прибор состоит из металлического корпуса, в котором находится капсула с измерительной шкалой и поплавок-индикатор. Положение поплавка в капсуле зависит от объемного расхода воздуха. Перемещаясь по капсуле со шкалой и принимая определенное положение, индикатор сообщает техническому персоналу о значении расхода воздуха.

Читать еще:  Что можно сделать с механическим двигателем

Где применяются расходомеры воздуха?

Расходомеры воздуха используются в большом диапазоне различных отраслей промышленности, где необходимы контроль и управление расходом воздуха. Они могут выступать в качестве приборов для измерения расхода воздуха газа или пара в вентиляции, в трубопроводах промышленных предприятий, для коммерческого учета объемного расхода газа и т.д. К областям промышленности, где необходимо измерение и управление расходом воздуха (газа) можно отнести:

  • Нефтегазовая промышленность
  • Химическая промышленность
  • Отдельные процессы пищевой промышленности
  • Любой технологический процесс, требующий измерения объемного расхода воздуха
  • Опасные производства, с наличием агрессивных газов
  • Горнодобывающая промышленность
  • Магистральные трубопроводы
  • Отельные процессы научно-исследовательских лабораторий
  • Наукоемкое производство
  • Аэрокосмическая отрасль
  • Общее производство

В целом выбор конкретной модели из приведенных в каталоге требует изучения особенностей производства, где планируется установка воздушных расходомеров. А также характеристик самого процесса и требований, предъявляемых регламентов при измерении воздуха, газа или пара. Получить консультацию специалистов вы можете, обратившись в нашу компанию. Инженеры помогут выбрать расходомер воздуха, подходящий под ваши требования и условия.

Расчет кол-ва воздуха. Калькулятор расхода воздуха двс

Расчет кол-ва воздуха — Formula OPEL

Примерный расчет кол-ва воздуха требуемое на разных оборотах.

Первая графа (Объем) в кубических мм., вторая (Коэф. наполнения) у разных двигателей свой, например 0,85. Последнее (Наддув) надо указывать абсолютное значение. Примерно так: если 1 бар избытка, то писать надо 2 бара. Разделитель точка, если не считает, значит забили запятую.

7. Массовый расход воздуха. Цикловое наполнение воздухом Автор: А.М. Банов

Для того чтобы верно рассчитать топливоподачу и угол опережения зажигания, необходимо определять нагрузку на двигатель. Косвенным показателем нагрузки может служить масса воздуха, попадающего в цилиндр – цикловое наполнение воздухом.

Датчик массового расхода выдает сигнал, пропорциональный массе воздуха, который всасывается двигателем. Дискретная работа двигателя определяется тактами его цилиндров. Управляющая программа обрабатывает сигнал с датчика массового расхода за один такт работы двигателя и к началу каждого такта (рабочего хода одного из цилиндров) имеет рассчитанную величину – массу попадающего в двигатель воз- духа. Эта величина-параметр может быть отображена тестером и называется расходом воздуха. Параметр измеряется в кг/час и зависит от режима работы двигателя.

Невозможно сопоставить выходное напряжение датчика с реальным расходом воздуха. Можно только сказать, что при выключенном двигателе напряжение с датчика составляет 1,00В. Непростой алгоритм расчета воздуха позволяет учитывать сложную газодинамику процессов во впускном коллекторе и достаточно точно определять показания параметра массового расхода воздуха.

Однако сам расход воздуха не может являться величиной, определяющей нагрузочный режим двигателя, нагрузка может быть оценена параметром циклового наполнения – массы воздуха, попадающего в цилиндр двигателя на текущем цикле его работы. Расчет циклового наполнения воздухом выполняется из массового расхода воздуха с учетом текущих оборотов двигателя.

При работе двигателя в режиме холостого хода массовый расход воздуха определяется объемом двигателя, его тепловым состоянием и оборотами коленчатого вала. При прогретом двигателе отклонения более чем на ±2 кг/час от номинального значения (9 кг/час –1,5л, 2111, 850об/мин,>85°C; 8кг/час – 1,5л, 2112, 800 об/мин,>85°C) означает наличие неисправности в работе двигателя или системы управления.

Обычно при выходе параметра расхода воздуха из диапазона принято менять датчик массового расхода воздуха. Да, датчик может быть причиной неисправности, но нарушение компрессии в двигателе, подсос воздуха, неправильная топливоподача могут приводить к такому же сбою в измерении массы воздуха, попадающего в цилиндры двигателя.

Ошибки, связанные с датчиком массового расхода воздуха:

Р0102 – Низкий сигнал с датчика массового расхода воздуха Если такая ошибка попала в память блока управления, то можно не сомневаться, что выходной провод датчика, каким-то образом соединен с массой либо произошел обрыв сигнального провода, либо нет питания датчика. В последнем случае, такая же ошибка должна сопровождаться неисправностями и по датчику температуры и по датчику положения дроссельной заслонки. Неисправность, скорее всего, кроется в соединительных разъемах датчика и блока управления (например, попадание влаги).

Р0103 – Высокий сигнал с датчика массового расхода воздуха Такой код будет занесен в память контроллера, если общий провод (масса) датчика будет оборван. Проверка электрических цепей датчика определяется функциональным назначением каждого провода (см.рис.10).

Рис. 10 Схема подключения датчика массового расхода воздуха к системе управления

При наличии кодов диагностики Р0102, Р0103 значение параметра массового расхода воздуха равно 0, цикловое наполнение определяется из таблицы, прошитой в памяти блока управления, и зависит от положения дроссельной заслонки и оборотов двигателя. При этом двигатель работает, и автомобиль может доехать до станции технического обслуживания, хотя мешают повышенные обороты холостого хода (шаговый мотор система открыла полностью) – аварийный режим работы.

Неисправность – Если двигатель заводится и сразу глохнет, нужно попробовать завести его без датчика массового расхода (снять разъем с датчика). Если двигатель будет работать в аварийном режиме, нужно менять датчик, он неисправен.

Неисправность – Выходной сигнал с датчика массового расхода проверяется с помощью тестера ДСТ-6 или тестера-сканера (в каналах АЦП). Если сигнал при включенном зажигании и не работающем двигателе отличается от 1.00В на ±0.01, нужно проверять цепь питание датчиков. Если питание датчиков 5,00В±0.01, то датчик скорее всего неисправен.

Измерение массового расхода воздуха в инжекторных ДВС

Измерение мгновенного расхода воздуха

Существуют три основных способа замера расхода воздуха:

по косвенным показателям (давление и температура воздуха во впускном трубопроводе, угол открытия дроссельной заслонки, частота вращения коленчатого вала и др.), поданным замера объема и температуры входящего воздуха и, наконец, по определению массового расхода воздуха.

Способ замера воздуха по перемещению подвижного элемента в его потоке получил широкое распространение на европейских автомобилях в 80-е годы в системах управления К и KE-Jеtronic. На впускной системе установлен диск, перемещающийся в диффузоре. При этом в зависимости от расхода воздуха изменяется кольцевое проходное сечение межту диском и диффузором. В нижней части диффузора имеется расширяющийся конус для пропуска газов при обратных вспышках во впускном трубопроводе. У верхней части рычага диска расположена опорная поверхность, в которую упирается регулировочный винт состава смеси, расположенный в промежуточном рычаге. Этот рычаг перемещает плунжер в дозаторе топлива. На рычаге диска установлен противовес, уравновешивающий массы плеча рычага диска, промежуточного рычага и плунжера. В дозаторе топлива имеются дифференциальные камеры (по числу цилиндров). Каждая дифференциальная камера разделена мембраной па две полости. К первичным камерам топливо подводится от фильтра под постоянным давлением (500 кПа), поддерживаемое регулятором, расположенным в нижней части дозатора. Мембранный механизм с пружиной обеспечивает постоянный перепад давлений (10 кПа) между верхней камерой и трубкой, подающей топливо к форсунке, независимо от количества впрыскиваемого топлива. Форсунки систем К и KE-Jetronic имеют постоянно открытое во время работы дозирующее сечение. Регулирование производится изменением давления топлива (от 300 кПа при минимальной подаче до 500 кПа при полной нагрузке) путем перемещения плунжера, рабочая кромка которого устанавливает необходимое проходное сечение в зависимости от расхода воздуха. Равномерность подачи топлива по цилиндрам достигается перемещением упоров пружин в дифференциальных камерах при помощи регулировочных винтов. Такого рода работы проводятся на специальных стендах. При неработающем двигателе упор диска находится на пластинчатой пружине определяющей исходное положение диска. Сверху и снизу имеются эластичные ограничители его хода (верхний для максимального расхода воздуха, нижний ограничивает ход при обратной вспышке смеси во впускном трубопроводе).

Читать еще:  Давление топлива в дизельном двигателе камаз

K-Jetronic

1. топливный насос2. аккумулятор топлива3. топливный фильтр4. регулятор управляющего давления5. форсунка впрыска6. пусковая форсунка7. дозатор-распределитель топлива8. расходомер воздуха9. термореле10. клапан добавочного воздуха

Система управления двигателем типа K-JetronicДвигатель внутреннего сгорания

Измерение массового расхода воздуха при испытаниях ДВС

Массовый расход воздуха является одним из значимых параметров при испытаниях двигателя внутреннего сгорания. Этот параметр позволяет судить о полноте сгорания топлива, его нагрузке. Рекомендуемые нормативными документами приборы для измерения расхода воздуха двигателем при его испытаниях мало пригодны для широкого применения ввиду их дороговизны. Это относится также к приборам для измерения расхода воздуха, принцип действия которых основан на термоанемометрическом методе. Автомобильные датчики массового расхода воздуха не пригодны для применения в испытательном оборудовании из-за долговременной нестабильности параметров и несоответствия предъявляемым метрологическим требованиям. В статье рассматривается применение метода измерения расхода воздуха по перепаду давления на длине трубы (воздухозаборнике). Показано, что этот метод при малых затратах позволяет осуществлять измерение расхода воздуха двигателем. При этом погрешность измерений не превышает допустимую по нормативным документам на испытания двигателей.

Measurement of mass airflow when testing engine

The mass air fl ow rate is one of the important parameters when testing an internal combustion engine. This parameter allows to judge the completeness of fuel combustion, its load. Recommended regulatory instruments instruments for measuring air fl ow to the engine , when the tests are not very suitable for widespread use due to their cost. This also applies to devices for measuring air fl ow principle, which is based on the thermoanemometric method. Automotive mass air fl ow sensors are not suitable for use in test equipment due to long-term instability of parameters and non-compliance with the metrological requirements. The article discusses the application of the method of measuring air fl ow, the pressure drop along the length of the pipe (air intake). It is shown that this method at low cost allows to measure the air fl ow rate of the engine. In this case, the measurement error does not exceed the permissible according to the normative documents for testing engines.

Цель исследований — обосновать применение метода измерения расхода воздуха при испытаниях двигателя внутреннего сгорания, по перепаду давления на длине трубы (воздухозаборнике) с целью повышения точности измерения и снижения стоимости измерительного оборудования.

Массовый расход воздуха является одним из значимых параметров двигателя внутреннего сгорания (ДВС) при его испытаниях. Этот параметр позволяет судить о полноте сгорания топлива, его нагрузке [3, 4].

Косвенным показателем нагрузки может служить масса воздуха, попадающего в цилиндр, — цикловое наполнение воздухом.

Сам расход воздуха не может являться величиной, определяющей нагрузочный режим двигателя, нагрузка может быть оценена параметром циклового наполнения — массы воздуха, попадающего в цилиндр двигателя при текущем цикле его работы. Расчет циклового наполнения воздухом выполняется из массового расхода воздуха с учетом текущих оборотов двигателя. Массовый расход воздуха и цикловое наполнение воздухом могут быть использованы при диагностике двигателя, и отражать правильность работы впускного тракта [5, 6].

Самые распространенные сегодня расходомеры базируются на работе термоанемометрических измерителей. В корпусе датчика встроены две тонкие платиновые нити: одна рабочая, а вторая — контрольная. Обе нити нагреваются током и имеют одинаковую температуру. Рабочая нить обдувается потоком воздуха, и для поддержания температуры на ней, равной температуре на контрольной нити, автоматика увеличивает проходящий через рабочую нить ток. Разность показателей проходящего через рабочую нить тока определяет количество воздуха, всасываемого двигателем.

Стоимость термоанемометрических приборов для измерения массового расхода воздуха (скорости потока), предлагаемых производителями, составляет около сотни тысяч рублей, и по этой причине они не малопригодны для широкого применения при обкатке и испытаниях ДВС.

Погрешность автомобильных датчиков массового расхода воздуха (ДМРВ) превышает допустимую для использования при испытаниях ДВС, она изменяется в процессе старения датчиков, датчики метрологически не аттестованы. Некоторое количество работ посвящено созданию оборудования для периодической калибровки ДМРВ, находящихся в эксплуатации на транспорте [9, 10], что подтверждает нестабильность их параметров. Они также не пригодны для применения при обкатке и испытаниях ДВС.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector