В каких принтерах используются шаговые двигатели
Советы для начинающих. Arduino и шаговый двигатель Nema 17
Перед началом очередного проекта на Arduino, было решено использовать шаговый двигатель Nema 17.
Почему именно Nema 17? В первую очередь, из-за отличного соотношения цена/качество.
Перед подключением Nema 17, за плечами был определенный опыт работы с шаговиком 24byj48 (даташит). Управлялся он и с помощью Arduino, и с помощью Raspberry pi, проблем не возникало. Основная прелесть этого двигателя — цена (около 3 долларов в Китае). Причем, за эту сумму вы приобретаете двигатель с драйвером в комплекте. Согласитесь, такое можно даже и спалить, не особо сожалея о содеянном.
Теперь появилась задача поинтереснее. Управлять шаговым двигателем Nema 17 (даташит). Данная модель от оригинального производителя реализуется по цене около 40 долларов. Китайские копии стоят раза в полтора-два дешевле — около 20-30 долларов. Очень удачная модель, которая часто используется в 3D принтерах и CNC-проектах. Первая возникшая проблема — как подобрать драйвер для этого двигателя. Силы тока на пинах Arduino для питания не хватит.
Выбор драйвера для управления Nema 17
Google подсказал, что для оживления Nema 17 можно использовать драйвер A4988 от Poulou (даташит).
Кроме того, есть вариант использования микросхем L293D. Но A4988 считается более подходящим вариантом, так что на нем и остановились во избежание потенциальных проблем.
Как уже упоминалось выше, использовались двигатель и драйвер, заказанные из Китая. Ссылки ниже.
Ссылки для заказа необходимого оборудования из Китая
Подключение Nema 17 через A4988
Подключение было реализовано на основании этой темы на Arduino форуме. Рисунок приведен ниже.
Собственно, данная схема присутствует практически на каждом блоге-сайте, посвященном Arduino. Плата была запитана от 12 вольтового источника питания. Но двигатель не вращался. Проверили все соединения, еще раз проверили и еще раз.
Первая проблема
Наш 12 вольтовый адаптер не выдавал достаточной силы тока. В результате адаптер был заменен на 8 батареек АА. И двигатель начал вращаться! Что ж, тогда захотелось перескочить с макетной платы на прямое подключение. И тут возникла
Вторая проблема
Когда все было распаяно, двигатель опять перестал двигаться. Почему? Не понятно до сих пор. Пришлось вернуться к макетной плате. И вот тут возникла вторая проблема. Стоит предварительно было посидеть на форумах или внимательно почитать даташит. Нельзя подключать-отключать двигатель когда на контроллер подано питание! В результате контроллер A4988 благополучно сгорел.
Эта проблема была решена покупкой нового драйвера на eBay. Теперь, уже с учетом накопленного грустного опыта, Nema 17 был подключен к A4988и запущен, но.
Шаговый двигатель сильно вибрирует
Во время вращения ротора двигатель сильно вибрировал. О плавном движении не было и речи. Гугл вновь в помощь. Первая мысль — неправильное подключение обмоток. Ознакомление с даташитом шагового двигателя и несколько форумов убедили, что проблема не в этом. При неправильном подключении обмоток двигатель просто не будет работать. Решение проблемы крылось в скетче.
Программа для Arduino
Оказалось, что есть замечательная библиотека для шаговых двигателей, написанная ребятами из Adafruit. Используем библиотеку AcclStepper и шаговый двигатель начинает работать плавно, без чрезмерных вибраций.
Основные выводы
- Никогда не подключайте/отключайте двигатель, когда на контроллер подано питание.
- При выборе источника питания, обратите внимание не только на вольтаж, но и на мощность адаптера.
- Не расстраивайтесь, если контроллер A4988 вышел из строя. Просто закажите новый 😉
- Используйте библиотеку AcclStepper вместо голого кода Arduino. Шаговый двигатель с использованием этой библиотеки будет работать без лишних вибраций.
Скетчи для управления шаговым двигателем
Простой Arduino-код для проверки шагового двигателя
//простое подключение A4988
//пины reset и sleep соединены вместе
//подключите VDD к пину 3.3 В или 5 В на Arduino
//подключите GND к Arduino GND (GND рядом с VDD)
//подключите 1A и 1B к 1 катушке шагового двигателя
//подключите 2A и 2B к 2 катушке шагового двигателя
//подключите VMOT к источнику питания (9В источник питания + term)
//подключите GRD к источнику питания (9В источник питания — term)
int stp = 13; //подключите 13 пин к step
int dir = 12; //подключите 12 пин к dir
if (a 400) // вращение на 200 шагов в направлении 2
Второй код для Arduino для обеспечения плавного вращения двигателя. Используется библиотека AccelStepper library.
AccelStepper Stepper1(1,13,12); //использует пин 12 и 13 для dir и step, 1 — режим «external driver» (A4988)
int dir = 1; //используется для смены направления
Stepper1.setMaxSpeed(3000); //устанавливаем максимальную скорость вращения ротора двигателя (шагов/секунду)
Stepper1.setAcceleration(13000); //устанавливаем ускорение (шагов/секунду^2)
Stepper1.move(1600*dir); //устанавливает следующее перемещение на 1600 шагов (если dir равен -1 будет перемещаться -1600 -> противоположное направление)
dir = dir*(-1); //отрицательное значение dir, благодаря чему реализуется вращение в противоположном направлении
delay(1000); //задержка на 1 секунду
Stepper1.run(); //запуск шагового двигателя. Эта строка повторяется вновь и вновь для непрерывного вращения двигателя
Оставляйте Ваши комментарии, вопросы и делитесь личным опытом ниже. В дискуссии часто рождаются новые идеи и проекты!
Как работает шаговый двигатель
Узнайте все преимущества шаговых двигателей, а также достоинства и недостатки выбора этого типа двигателей для вашего проекта.
Если вы работаете над проектом, в котором есть движущаяся часть, вы, вероятно, будете искать двигатель, чтобы сделать это движение возможным. В этой серии статей мы рассматриваем наиболее популярные типы двигателей, которые используют разработчики. Пока мы рассмотрели:
Чтобы узнать, для каких проектов лучше всего подходят шаговые двигатели, ознакомьтесь с обзором:
Обзор шаговых двигателей
В мире разработчиков шаговые двигатели широко распространены в технологии 3D печати. Все потребительские 3D принтеры оснащены ими. Шаговые двигатели также широко используются и в робототехнике.
Шаговые двигатели широко используются в робототехнике и 3D принтерах
Шаговые двигатели часто сравнивают с серводвигателями, поскольку эти оба типа двигателей используются в системах, требующих высокого уровня точности позиционирования.
Однако способы, которыми каждый тип двигателя отслеживает свое положение, сильно отличаются. Как обсуждалось в предыдущей статье, серводвигатель содержит в себе потенциометр, который измеряет абсолютное положение двигателя. Поэтому в любой момент времени сервопривод точно знает, как расположен вал двигателя. Шаговый двигатель не измеряет угол своего вала.
Как работает шаговый двигатель?
Конструкция шагового двигателя похожа на более сложную версию бесколлекторного двигателя. Вы заметите, что многие детали, по сути, одинаковы, но в шаговом двигателе их конструкция значительно сложнее.
Основные компоненты шагового двигателя
В шаговом двигателе обмотки расположены вокруг внешней части кожуха. Постоянные магниты установлены на валу двигателя. Поскольку эти постоянные магниты достаточно тяжелые, шариковый подшипник с обеих сторон вала двигателя помогает стабилизировать двигатель.
Шаговые двигатели в теории работают аналогично бесколлекторным двигателям. Для создания магнитного поля обмотки возбуждаются и, воздействуя на постоянные магниты, заставляют вал двигателя двигаться.
Ребра на постоянных магнитах соответствуют похожим ребрам на обмотках на корпусе двигателя. Вместо непрерывного вращения шаговые двигатели перемещаются между этими ребрами дискретными шагами.
Различие с бесколлекторным двигателем заключается в том, что вместо того, чтобы каждый раз, когда обмотки переключают полярность, поворачиваться примерно на 30% от окружности, шаговый двигатель поворачивается очень немного, обычно всего на 1,8 градуса. Каждый из этих крошечных поворотов называется шагом. Контроллеры могут также управлять мощностью, подаваемой на обмотки, так, что шаговый двигатель может поворачиваться всего на 0,05625 градуса за шаг. Этот вид чрезвычайно точного управления движением позволяет шаговым двигателям достичь очень высокой точности позиционирования.
Достоинства шаговых двигателей
Высокая точность позиционирования
Основная причина существования шаговых двигателей заключается в том, что система управления движением обеспечивает высокую точность отслеживания положения.
Высокий крутящий момент на низких скоростях
Шаговые двигатели обеспечивают значительный крутящий момент на низких скоростях.
Оценка характеристик шаговых двигателей
Недостатки шаговых двигателей
Низкая максимальная скорость
Поскольку шаговые двигатели перемещаются определенными шагами, у них низкая максимальная скорость вращения.
Низкий крутящий момент на высоких скоростях
На более высоких скоростях шаговые двигатели теряют значительный крутящий момент, обеспечивая лишь около 20% от своего крутящего момента на более низких скоростях.
ПОЛЕЗНО Комплектующие с пунктов утилизации, приема металла
Junkhead
Junkhead
СКАЗАЛ ТУТ НЕМНОГО
- 01.09.2019
Товарищи!
Хотелось бы поделиться информацией по поводу мест для поиска комплектующих для нашего и других самодельных ЧПУ станков, 3д-принтеров и т.п..
Вчера открыл для себя как источник деталей пункты приема оргтехники на утилизацию. Подумал, что мол, съезжу, посмотрю, не убудет. Приехал, где-то полчаса бродил по складу, где были сотни принтеров, мфу. мониторов и прочей техники. В итоге я оставил там 1100 рублей, взял матричный принтер, по ощущениям, формата А3 и цифровую печатную машину такого же размера, также у них в загашнике оказались шаговые двигатели типоразмера Nema 23.
На итог я заимел 7 униполярных шаговиков Nema 23 на ток 1А(если запараллелить полуобмотки и сделать биполярный — будет 2А), три биполярных шаговика nema 17, один из которых на 400шагов за оборот и еще других мелких. Среди прочего из принтера я добыл японский сервопривод, на 2 или 3 тысячи оборотов, направляющий вал диаметром (. ) 22мм и длиной 47см с кареткой на двух бронзовых втулках, блок питания на 38В 4А, ну и прочего по мелочи типа качественных шлейфов, концевиков. А из печатной машинки достал направляющую 14мм также с двумя бронзовыми втулками, правда имеющими небольшой люфт, линейный трансформатор на 30В , правда неизвестно какой ток, но вторичка жирная, символьный индикатор на хренолион символов, механическую нестандартную клавиатуру да и все, пожалуй. Также взял винтажный жесткий диск WD на 43мб, в котором и располагается 400-шаговый мотор.
Прилагаю фото трофеев, между жирными валами для сравнения лежит вал 10мм, который кстати был изъят из той же печатной машины. Как по мне — затарился неплохо!
Также всякие направляющие и двигатели можно купить по цене лома на металлоприемках, если договориться с персоналом, то они могут уведомлять о поступлении интересующих вас вещей.
А так советую попробовать, найти на авитах-юлах, каких-то иных сайтах объявления с текстом наподобие «вывоз оргтехники любые объемы» и попросить взглянуть на ассортимент. Как знать, может вам эта затея понравится.
Если будете брать принтеры/МФУ вслепую, обычно стоит обращать внимание на большие этажные МФУ, на «желтую» технику, на ее вес, обычно это может сказать о возрасте устройства, раньше не жалели материалов, в более современных МФУ все по-проще, потоньше, послабже и т.д.. В сканерах обычно видно направляющие через стекло. В матричных принтерах также можно посмотреть открыв крышку.
Надеюсь, кому-то это было полезно, хотя информация по сути открытая и лежит на поверхности.
Темы из этой же категории
- Кто нибудь покупал такой станок?
- крепление линейных направляющих
- ЛИПОВЫЕ СКИДКИ НА ALIEXPRESS
- Щетки с держателем для шпинделей 52мм
- Aliexpress. Надираловка с ценами.
extrimus
extrimus
МЕСТНЫЙ СТАРОЖИЛА
- 01.09.2019
doubleB
doubleB
НЕ ТОЛЬКО ЧИТАЕТ
- 01.09.2019
doubleB
doubleB
НЕ ТОЛЬКО ЧИТАЕТ
- 01.09.2019
- Последнее редактирование: 01.09.2019
Если на авито, то рекомендую искать Espon DFX — большие, килограмм на 20 матричные принтеры. в них и валы где-то на 18-20мм(и еще десяток меньшего диаметра) длиной 45см и ШД nema23+nema17 2шт, куча концевиков и один серводвигатель (и ножки резиновые на винтах ). Или принтеры поменьше — Epson FX.
Не написал в первом сообщении — сканеры любые — тоже бесполезны. Даже в старых моделях ШД слабенькие. Был у меня доступ к одному складу, покопался из любопытства
Junkhead
Junkhead
СКАЗАЛ ТУТ НЕМНОГО
- 02.09.2019
- Последнее редактирование: 02.09.2019
Что, у вас совсем ничего не выкидывают из организаций? По-любому же есть хоть бы сбор металлолома.
Junkhead
Junkhead
СКАЗАЛ ТУТ НЕМНОГО
- 14.09.2019
Сегодня вновь посетил то дивное место и после весь день разбирал древние матричники. В прошлый раз мне достался Oki Microline 395, на этот раз я приволок 3 штуки Oki Microline 4410 и приволок — это в прямом смысле, т.к. весят они по 42кг. В общем внутри каждого из них есть направляющая диаметром 25мм и длиной 56.5см с кареткой на бронзовых втулках, мотор Nema23 на 1а, один сервопривод забавного Х-образного сечения(никогда таких не видел) на 2000 об/минуту, 300-ваттный импульсный БП, пока не исследовал какие напряжения выдает, думаю, вольт 30-40, штук пять мелких шаговых моторов, керамические резисторы на 40вт 12 ом в количестве 2шт, куча тонких валов 5-10мм, подшипников и бронзовых втулок, дисплей символьный двухстрочный на 16 символов(подобные от телефонных аппаратов успешно подключал к ардуино), всякие шестеренки, провода, кнопочки, концевики оптические и обычные. Ах да, 12в кулера 2шт 92х20мм, 2шт 60х20мм 1шт 40х15мм, все на шарикоподшипниках, качественные, хотя вот мелкие 40мм(2 из 3 принтеров) кажется немного подубитые.
Также в догонку взял сканер А3 Must p3600 pro, но он какой-то полурабочий, и из интересного там только один вал и шаговик и стальной корпус. Подумываю, не починить ли его и использовать по прямому назначению.
Также взял 4 блока питания, один MeanWell 30В 8А, в неизвестном состоянии, рабочие 19В 8А, 24В 2.6А — две штуки.
Бонусом отдали пару механических клавиатур от кассовых аппаратов с клавишами Cherry Black, газовые стойки(как в авто используются в багажниках/капотах) и лазерные кассовые сканеры штрихкодов, там слабый моторчик и система зеркал.
Вся эта борода мне обошлась в 2500р. Я считаю, удачно. С учетом предыдущего транша у меня теперь есть комплект направляющих и моторов для более серьезного станка и еще деталей на всякие проекты. Думаю на этом остановиться, на зиму мне развлечений хватит. Да, кстати принтеры эти имеют днище алюминиевое и его можно сдать в металл, отбив немного ценник.
Я это все пишу, чтобы сложилось понимание, чего можно там урвать, что извлечь полезного и какой примерно порядок цен. А так там еще была куча мониторов ЖК, от 200р, которые можно приспособить к станку, например. Ноуты за 900 слабенькие, но хорошие, типа Lenovo и IBM ThinkPad, такие, какие считаются корпоративными и неубиваемыми, их тоже утилизируют из организаций, можно найти с COM и LPT портом(как раз такие сегодня видел). Кстати ноут с которого я сейчас пишу, я также взял с утилизации, Lenovo ThinkPad T420, только он уже был освежен SSD накопителем и памятью 8гб, но и ценник там был другой, разумеется, 15K, но за эти деньги в магазине купишь только жалкое подобие компьютера, а тут магниевая рама, хорошая клавиатура и экран, защита от жидкостей и прочие прелести. Там же взял к нему док станцию, запасную клавиатуру и петли экрана, т.к. планирую использовать долго. Такие пироги, в общем утилизация радует.
Шаговый двигатель
- Типы шаговых двигателей
- Реактивный шаговый двигатель
- Шаговый двигатель с постоянными магнитами
- Гибридный шаговый двигатель
Предшественником шагового двигателя является серводвигатель.
Шаговые (импульсные) двигатели непосредственно преобразуют управляющий сигнал в виде последовательности импульсов в пропорциональный числу импульсов и фиксированный угол поворота вала или линейное перемещение механизма без датчика обратной связи. Это обстоятельство упрощает систему привода и заменяет замкнутую систему следящего привода (сервопривода) разомкнутой, обладающей такими преимуществами, как снижение стоимости устройства (меньше элементов) и увеличение точности в связи с фиксацией ротора шагового двигателя при отсутствии импульсов сигнала.
Очевиден и недостаток привода с шаговым двигателем: при сбое импульса дальнейшее слежение происходит с ошибкой в угле, пропорциональной числу пропущенных импульсов [2].
Поэтому в задачах, где требуются высокие характеристики (точность, быстродействие) используются серводвигатели. В остальных же случаях из-за более низкой стоимости, простого управления и неплохой точности обычно используются шаговые двигатели.
Конструкция шагового электродвигателя
Шаговый двигатель, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть.
Шаговые двигатели надежны и недороги, так как ротор не имеет контактных колец и коллектора. Ротор имеет либо явно выраженные полюса, либо тонкие зубья. Реактивный шаговый двигатель — имеет ротор из магнитомягкого материала с явно выраженными полюсами. Шаговый двигатель с постоянными магнитами имеет ротор на постоянных магнитах. Гибридный шаговый двигатель имеет составной ротор включающий полюсные наконечники (зубья) из магнитомягкого материала и постоянные магниты. Определить имеет ротор постоянные магниты или нет можно посредством вращения обесточенного двигателя, если при вращении имеется фиксирующий момент и/или пульсации значит ротор выполнен на постоянных магнитах.
Статор шагового двигателя имеет сердечник с явно выраженными полюсами, который обычно делается из ламинированных штампованных листов электротехнической стали для уменьшения вихревых токов и уменьшения нагрева. Статор шагового двигателя обычно имеет от двух до пяти фаз.
Характеристики
Так как шаговый двигатель не предназначен для непрерывного вращения в его параметрах не указывают мощность. Шаговый двигатель — маломощный двигатель по сравнению с другими электродвигателями.
Одним из определяющих параметров шагового двигателя является шаг ротора, то есть угол поворота ротора, соответствующий одному импульсу. Шаговый двигатель делает один шаг в единицу времени в момент изменения импульсов управления. Величина шага зависит от конструкции двигателя: количества обмоток, полюсов и зубьев. В зависимости от конструкции двигателя величина шага может меняться в диапазоне от 90 до 0,75 градусов. С помощью системы управления можно еще добиться уменьшения шага пополам используя соответствующий метод управления.
Типы шаговых двигателей
- По конструкции ротора выделяют три типа шаговых двигателей:
- реактивный;
- с постоянными магнитами;
- гибридный.
Реактивный шаговый двигатель
Реактивный шаговый двигатель — синхронный реактивный двигатель. Статор реактивного шагового двигателя обычно имеет шесть явновыраженных полюсов и три фазы (по два полюса на фазу), ротор — четыре явно выраженных полюса, при такой конструкции двигателя шаг равен 30 градусам. В отличии от других шаговых двигателей выключенный реактивный шаговый двигатель не имеет фиксирующего (тормозящего) момента при вращении вала.
Ниже представлены осциллограммы управления для трехфазного шагового двигателя.
Осциллограммы управления для четырехфазного шагового двигателя показаны на рисунке ниже. Последовательное включение фаз статора создает вращающееся магнитное поле за которым следует ротор. Однако из-за того, что ротор имеет меньшее количества полюсов, чем статор, ротор поворачивается за один шаг на угол меньше чем угол статора. Для реактивного двигателя угол шага равен:
,
- где NR — количество полюсов ротора;
- NS – количество полюсов статора.
Чтобы изменить направление вращения ротора (реверс) реактивного шагового двигателя, необходимо поменять схему коммутации обмоток статора, так как изменение полярности импульса не изменяет направления сил, действующих на невозбужденный ротор [2].
Реактивные шаговые двигатели применяются только тогда, когда требуется не очень большой момент и достаточно большого шага угла поворота. Такие двигатели сейчас редко применяются.
- Отличительные черты:
- ротор из магнитомягкого материала с явно выраженными полюсами;
- наименее сложный и самый дешевый шаговый двигатель;
- отсутствует фиксирующий момент в обесточенном состоянии;
- большой угол шага.
Шаговый двигатель с постоянными магнитами
Шаговый двигатель с постоянными магнитами имеет ротор на постоянных магнитах. Статор обычно имеет две фазы.
По сравнению с реактивными, шаговые двигатели с активным ротором создают большие вращающие моменты, обеспечивают фиксацию ротора при снятии управляющего сигнала. Недостаток двигателей с активным ротором — большой угловой шаг (7,5—90°). Это объясняется технологическими трудностями изготовления ротора с постоянными магнитами при большом числе полюсов. Если угол фиксации находится в диапазоне от 7,5 до 90 градусов скорее всего это шаговый двигатель с постоянными магнитами нежели гибридный шаговый двигатель.
Обмотки могут иметь ответвление в центре для работы с однополярной схемой управления. Двухполярное управление требуется для питания обмоток без центрального ответвления.
- Таким образом по виду обмоток выделяют два типа шаговых двигателей:
- униполярный (однополярный),
- биполярный (двухполярный).
Униполярный (однополярный) шаговый двигатель
Униполярный шаговый двигатель с постоянными магнитами имеет одну обмотку на фазу с ответвлением в центре. Каждая секция обмотки включается отдельно.
Таким образом расположение магнитных полюсов может быть изменено без изменения направления тока, а схема коммутации может быть выполнена очень просто (например на одном транзисторе) для каждой обмотки. Обычно центральное ответвление каждой фазы делается общим, в результате получается три вывода на фазу и всего шесть для обычного двухфазного двигателя.
Легкое управление однополярными двигателями сделало их популярными для любителей, они возможно являются наиболее дешевым способом чтобы получить точное угловое перемещение.
Биполярный шаговый двигатель
Двухполярные двигатели имеют одну обмотку на фазу. Для того чтобы изменить магнитную полярность полюсов необходимо изменить направление тока в обмотке, для этого схема управления должна быть более сложной, обычно с H-мостом. Биполярный шаговый двигатель имеет два вывода на фазу и не имеет общего вывода. Так как пространство у биполярного двигателя используется лучше, такие двигатели имеют лучший показатель мощность/объем чем униполярные. Униполярный двигатель имеет двойное количество проводников в том же объеме, но только половина из них используется при работе, тем не менее биполярный двигатель сложнее в управление.
Управление шаговым двигателем с постоянными магнитами
Для управления шаговым двигателем на постоянных магнитах к его обмоткам прикладывается сфазированный переменный ток. На практике это почти всегда прямоугольный сигнал сгенерированный от источника постоянного тока. Биполярная система управления генерирует прямоугольный сигнал изменяющийся от плюса к минусу, например от +2,5 В до -2,5 В. Униполярная система управления меняет направление магнитного потока катушки посредством двух сигналов, которые поочереди подаются на противоположные выводы катушки относительно ее центрального ответвления.
- Существует несколько способов управления:
- волновое,
- полношаговое,
- полушаговое.
Волновое управление
Простейшим способом управления шаговым двигателем является волновое управление. При таком управлении в один момент времени возбуждается только одна обмотка. Но такой способ управления не обеспечивает максимально возможного момента.
Шаговый двигатель с постоянными магнитами может иметь разную схему соединения обмоток статора.
На рисунке выше представлены схема биполярного шагового двигателя и двухполюсные осциллограммы управления. При таком управлении обе полярности («+» и «-«) подаются на двигатель. Магнитное поле катушки поворачивается за счет того, что полярность токов управления меняется.
На рисунке выше представлены схема униполярного шагового двигателя и однополюсные осциллограммы управления.Так как для управления униполярным шаговым двигателем требуется только одна полярность это существенно упрощает схему системы управления. При этом требуется генерация четырех сигналов так как необходимо два однополярных сигнала для создания переменного магнитного поля катушки.
Необходимое для работы шагового двигателя переменное магнитное поле может быть создано как униполярным так и биполярным способом. Однако для униполярного управления катушки двигателя должны иметь центральное ответвление.
Шаговый двигатель с постоянными магнитами может иметь разную схему соединения обмоток статора. Схемы соединения шагового двигателя показаны на рисунке ниже.