Arskama.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вентильный двигатель схема включения

Электродвигатели унифицированной серии ДБМВ

На стадии серийного производства

Встраиваемые пазовые бесконтактные высокомоментные электродвигатели унифицированной серии ДБМВ (20 типономиналов)

Бесконтактные моментные электродвигатели с постоянными магнитами на роторе широко применяются в приводах различных отраслей промышленности. В режиме вентильного двигателя они обладают линейными механическими и регулировочными характеристиками, а также высоким быстродействием, присущим коллекторным двигателям постоянного тока, отличаясь от них гораздо большей надежностью и сроком службы, особенно в тяжелых условиях эксплуатации систем железнодорожной, морской, авиационной и космической техники.
Электродвигатели новой серии ДБМВ (технические условия ЮЛИТ.520022.001ТУ) по сравнению с имеющимися аналогами имеют повышенные энергетические и динамические показатели за счет увеличения коэффициента статической добротности по моменту и снижения электромеханической постоянной времени.
В электродвигателях применены самарий-кобальтовые магниты. Все электродвигатели трехфазные, при этом каждая фаза разделена на две секции, что допускает 19 различных вариантов последовательного, параллельного соединения секций, включения обмоток электродвигателей в звезду, треугольник и так далее.
Условное обозначение электродвигателя содержит посадочный диаметр статора в мм, номинальный момент в Н·м, частоту вращения при холостом ходе (округленно в тысячах об/мин).
Условия эксплуатации электродвигателей соответствуют группе 3У ГОСТ РВ 20.39.414.1-97 в температурном диапазоне от минус 60 0 до плюс 85 0С, при повышенных уровнях влажности, вибраций и ударов, пониженном и повышенном давлении, воздействии соляного тумана, плесневых грибов, дождя и так далее.
Подробные параметры электродвигателей ДБМВ, гарантированными техническими условиями, а также возможные варианты схем подключения приведены здесь.
Все параметры определены в режиме вентильного двигателя при трехфазном напряжении гармонической формы с номинальным амплитудным значением линейного напряжения 27 В при последовательном соединении секций фаз и включении фаз в звезду. Также электродвигатели можно использовать и при любых других схемах соединения и включения секций и фаз обмотки, а также при дискретном управлении (коммутации) с однополярной и разнополярной циклограммой напряжений с моментами нагрузки вплоть до пускового при условии, что конструкция корпуса и способ теплоотвода будут обеспечивать температуру обмотки статора во всех условиях эксплуатации не выше 150 0С.
Кроме режима вентильного двигателя, электродвигатели серии ДБМВ обеспечивают работу в режимах шагового и синхронного вращения. Во всех случаях допускается кратковременное превышение напряжения питания до значений 60-100 В (в зависимости от габарита).
Сведения по монтажу и установке электродвигателей ДБМВ, а также их габаритные и установочные размеры можно скачать здесь.

Данная серия электродвигателей ДБМВ разработана предприятием ЗАО ППТФ «ЭЛМА-Ко».
Серийным заводом-изготовителем электродвигателей серии ДБМВ за приемкой ВП МО РФ является АО «ЛЕПСЕ».
Проведение работ по подготовке серийного выпуска осуществляется по поступлению заявок на конкретные типономиналы электродвигателей данной серии.

Вентильные двигатели

Вентильные двигатели – электрические машины, функционально объединенные с управляемым полупроводниковым коммутатором. Они близки по конструктивным признакам и характеристикам к коллекторным двигателям. Вентильные двигатели имеют частоту вращения вала, не зависящую от частоты сети, регулирование частоты вращения осуществляется путем изменения потока возбуждения и тока в якоре. Вентильные двигатели обладают высоким пусковым моментом и хорошими энергетическими показателями. Благодаря отсутствию коллекторно-щеточного узла вентильные двигатели имеют большую надежность и долговечность.

Вентильные двигатели, как и коллекторные, имеют широкое разнообразие конструкций и схем включения обмоток.

На рис. 1 представлена схема вентильного двигателя, который имеет такую же обмотку якоря, как и машина постоянного тока. На роторе вентильного двигателя 1 расположена обмотка возбуждения или постоянные магниты. В пазах статора располагается многофазная обмотка якоря 2, секции или группа секций которой присоединены через полупроводниковые блоки 3 к распределительным шинам 4 и сети.

В положении, показанном на рис. 1, открыты тиристоры 1′ и 5″. Ток якоря Iя в обмотке статора проходит по двум параллельным ветвям и создается вращающий момент. При движении ротора происходит переключение тиристоров датчиками положения ротора.

При повороте ротора по часовой стрелке на угол 360/m, где m — число отпаек (фаз) обмотки якоря (в рассматриваемой машине m = 8) происходит переключение тиристоров. Включаются тиристоры 2′ и 6″, а 1′ и 5″ — отключаются и т.д.

Таким образом, при вращении ротора вращается и поле якоря. При этом происходит электромеханическое преобразование энергии.

При реверсе работают пары тиристоров: 1″ и 5′, 2″ и 6′ и т.д. Включение и отключение тиристоров осуществляется путем подачи импульсов напряжения со специальных датчиков, реагирующих на положение ротора.

+ U Коммутатор по схеме рис. 1 по­лучается громоздким и вентильные дви­гатели по этой схеме практически не применяются. Чтобы упростить комму­татор, надо уменьшить число фаз машины.

Простейшей схемой вентильного двигателя является двухфазная схема, но наибольшее применение нашла трех­фазная схема (рис. 2). В этой схеме вентильная коммутация осуществляется трехфазным инвертором.

Система вентильной коммутации обычно состоит из датчика синхронизи­рующих сигналов, системы формирова­ния сигналов управления и управляемо­го коммутатора.

Датчик синхронизирующих сигналов задает порядок и частоту пере­ключения элементов коммутатора. При позиционном управлении — это датчик положения ротора, а при фазовом — датчик фазы напряжения якорной обмотки. Датчик положения ротора представляет собой встроен­ный в машину узел, состоящий из чувствительных элементов, закреплен­ных на статоре, и сигнальных элементов, закрепленных на роторе. Обыч­но используются фотоэлектрические или магнитомодуляционные датчики.

Читать еще:  Что сделать из двигателя от проигрывателя

Система формирования сигналов управления обеспечивает усиление и формирование синхронизирующих сигналов.

Управляемый коммутатор осуществляет бесконтактные переключе­ния в силовых цепях вентильного двигателя. Управляемый коммутатор выполняется на полупроводниковых приборах или других переключаю­щих элементах, например герконах.

В управляемых коммутаторах на полупроводниковых приборах ис­пользуются полностью управляемые приборы (транзисторы, двухоперационные тиристоры) и не полностью управляемые (тиристоры, семисторы).

По способу коммутации управляемые коммутаторы на не полностью управляемых полупроводниковых приборах можно разделить на три ви­да: с естественной, принудительной и смешанной коммутацией. При ес­тественной коммутации переключения происходят под действием ЭДС якорной обмотки. При принудительной коммутации управление тирис­торами осуществляется под действием коммутирующего напряжения от­дельного источника либо напряжения питающей сети. При смешанной коммутации имеет место комбинация первого и второго способов.

Вентильные двигатели могут питаться от сети как постоянного, так и переменного тока. Если управляемый коммутатор питается от сети посто­янного тока, то он представляет собой инвертор — преобразователь по­стоянного тока в переменный. Если управляемый коммутатор подключен к сети переменного тока, то он выполняет функции преобразователя частоты.

Электромеханическая часть вентильных двигателей постоянного то­ка, как правило, аналогична известным конструктивным модификациям синхронных машин. Для маломощных приводов используются двигатели с постоянными магнитами, а также гистерезисные, реактивные и индук­торные двигатели. В приводах средней и большой мощности используют­ся двигатели с электромагнитным возбуждением.

Характерной особенностью вентильных двигателей, отличающей их от двигателей постоянного тока, является наличие дополнительного кана­ла управления по углу синхронизации инвертора. Этот канал использует­ся для обеспечения необходимой жесткости механической характеристи­ки и достижения большей перегрузочной способности.

Вентильные двигатели применяются и в приводах небольшой мощ­ности, где нежелательно применение механического коммутатора (проиг­рыватели, приборы магнитной записи и др.).

Вентильные двигатели большой мощности нашли применение там, где ранее использовались нерегулируемые асинхронные или синхронные двигатели. Выполнены вентильные двигатели мощностью 1600 кВт с ре­гулированием частоты вращения для привода компрессоров холодильных машин и насосов циркуляционных систем.

Ротором выступает постоянный магнит.

Обозначение диодов VD1…VD6.

ДП – датчик положения.

Коммутатор всегда включает VT1…VT6 так, чтобы магнитный поток статора был перпендикулярен магнитному потоку ротора, подобно тому, как это делается в ДПТ с помощью механического коммутатора.

При включенных VT2, VT3, VT4 диаграмма потоков такая:

При Uип=0 двигатель не будет развивать момента, по мере увеличения напряжения будут увеличиваться и токи.

Механические характеристики такого двигателя такие же, как и у ДПТ.

w01>w02>w03>w04

Шаговые двигатели

Шаговые, или импульсные двигатели питаются импульсами электрической энергии, а ротор в зависимости от полярности импульсов перемещается по часовой стрелке или против часовой стрелки на определенный угол-шаг. Шаговые двигатели обычно маломощные индикаторные. Основная задача их отрабатывать электрические импульсы, преобразуя электрические сигналы в угловые перемещения.

Для управления шаговыми двигателями используются коммутаторы на полупроводниковых элементах, формирующие импульсы, которые подаются на фазы обмотки шагового двигателя. Число фаз выбирается равным четырем или шести. Шаг двигателя может быть от 180 до 1°. В специальных установках шаг может быть несколько минут.

Шаговые двигатели могут быть выполнены на основе конструкции любых синхронных двигателей. Так как основным требованием к шаговым двигателям является точность отработки сигналов и высокая частота импульсов, предпочтительны конструкции шагового двигателя, выпол­ненного на базе реактивных и индукторных синхронных машин.

Шаговые двигатели характеризуются предельной частотой импульсов, которые двигатель обрабатывает без пропуска шага. Пусковые свойства шаговых двигателей характеризуются частотой приемистости — максимальной частотой импульсов, при которой возможен пуск без потери шагов. В зависимости от типа шагового двигателя и нагрузки частота приемистости колеблется от 10 до 10 4 Гц.

Математическое описание процессов преобразования энергии при импульсном питании осуществляется по уравнениям электромеханического преобразования энергии и их видоизменениям, когда форма напряжения — импульсная.

Счетчик подсчитывает количество fп – прямых и fн – обратных «шагов».

Одновременно включена только одна обмотка.

p – число пар полюсов;

m – фазность двигателя.

1. aМ – цена импульса; определяет угловой шаг, совершаемый двигателем при единичном переключении (угол поворота за шаг).

2. Угловая характеристика двигателя

Для активного ротора:

угол Q снят для однополюсной однофазной машины.

Q=90° — нулевой момент; при Q>90° момент меняет знак.

Двигатель выполняет свои функции только в этом диапазоне изменения углов.

Мст – максимальный момент удержания.

При большой внешней нагрузке возможна потеря шага.

3. Частота приемистости – максимальная частота, до которой разгоняется двигатель при скачкообразном приложении импульсов из состояния покоя. Разгон при этом происходит за период одного импульса (подразумевается пуск на холостом ходу, то есть без нагрузки и присоединенных маховых масс). Если подавать импульсы часто, то наступит такая частота, которую двигатель не обработает.

4. Предельная динамическая характеристика – характеристика, связывающая частоту приемистости и момент инерции присоединенного к двигателю механизма.

Характеристика входит в документацию.

М21 Þ fп2 25 2627282930>

Дата добавления: 2017-05-02 ; просмотров: 2074 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Виды электродвигателей и схемы их подключения для 220 и 380 В

Принципом работы любого электрического двигателя является способность трансформировать электрическую энергию в механическую. Независимо от конструкции, каждая электрическая машина устроена одинаково: в неподвижной части (статор или индуктор) вращается подвижная часть (ротор или якорь). Для продолжительной бесперебойной эксплуатации оборудования необходимо правильное подключение электродвигателя.

  • Основные разновидности
  • Способы подключения
    • Однофазный асинхронный
    • Коллекторный вариант
    • Подключение «звездой»
    • Соединение «треугольник»
Читать еще:  Что называют вечным двигателем второго рода

Основные разновидности

Электрические двигатели обладают рядом очевидных достоинств. Они гораздо меньше по размеру, чем их тепловые аналоги идентичной мощности. Поэтому они отлично подходят для размещения в общественном электротранспорте или на заводских станках. Во время работы они не вредят окружающей среде выделением продуктов распада и паровыми испарениями.

Электрические двигатели можно разделить на две основных группы:

  1. Двигатели постоянного тока. Применяются для регулируемых электроприводов с эксплуатационными показателями высокого качества, такими как готовность к перезагрузке и вращательная равномерность. Ими оснащают вспомогательные агрегаты экскаваторов, полимерного оборудования, бурильных станков. Электродвигатели массово применяются в электротранспорте. Преобразователи постоянного тока дополнительно подразделяются на коллекторные и вентильные.
  2. Двигатели переменного тока. Являются более дешевыми и долговечными, с простым и надёжным конструкторским решением. Подавляющее большинство бытовой домашней техники укомплектовано этими электродвигателями. В промышленности они применяются в заводских станках, вентиляторах, компрессорах, насосах, лебёдках для поднятия и перемещения груза. По принципу работы эти механизмы делятся на синхронные и асинхронные.

Способы подключения

Электрические двигатели любой конструкции устроены одинаково. В статичной обмотке (статоре) осуществляется вращение ротора. В нём происходит возбуждение магнитного поля, отталкивающее его полюсы от статора. Бесперебойная работа этой конструкции обусловлена правильным подключением электродвигателя, зависящим от используемого вида.

Однофазный асинхронный

Этот двигатель получил такое название потому, что у него всего одна рабочая обмотка. Его мощность может составлять от пяти до десяти киловатт. Рабочая и пусковая обмотки располагаются между собой под прямым углом.

К цепи необходимо подключить фазовращающий элемент. Такая схема подключения однофазного электродвигателя с конденсатором отличается оптимальными пусковыми свойствами. Используя конденсатор, электрический двигатель может быть оснащен следующими видами этого двухполюсника:

  • рабочим;
  • пусковым;
  • рабочим и пусковым.

На практике чаще всего применяется пусковой конденсатор. Применить этот вариант можно, используя реле времени или замкнув электрическую цепь через пусковую кнопку.

В случае выбора схемы подключения электродвигателя 220 В через конденсатор пусковые характеристики заметно ухудшаются. Третий вариант с пусковым и рабочим двухполюсником считается промежуточным.

Коллекторный вариант

Универсальность этого двигателя заключается в том, что он имеет возможность получать энергию от преобразователей переменной или постоянной разновидности тока. Он находит применение в швейных или стиральных машинах, бытовых электрических инструментах.

Однофазные коллекторные двигатели отличаются такими недостатками:

  1. Сложность ремонтных работ, невозможность их самостоятельного проведения.
  2. Высокий уровень шума.
  3. Сложное управление.
  4. Высокая стоимость.

Сначала необходимо убедиться, что параметры электрической сети соответствуют допустимым напряжению и частоте, указанным на корпусе электродвигателя. Система должна быть предварительно обесточена.

Для подключения коллекторного двигателя следует последовательно соединить статор и якорь. Клеммы 2 и 3 необходимо соединить, а 1 и 4 замкнуть в цепь 220 В. Включение без регулятора перепада давления может спровоцировать образование пускового тока значительной мощности, что приведёт к искрению в коллекторе.

Также стоит рассмотреть схему подключения электродвигателя через магнитный пускатель:

  1. Следует удостовериться, что контактная система пускателя выдержит эксплуатационные условия электрического двигателя. Есть восемь категорий величины нагрузочного тока от 6,3 А до 250 A. Величина в этом случае обозначает силу тока, которую в состоянии пропустить через рабочие контакты электромагнитный пускатель.
  2. Катушка управления может быть рассчитана на 36 В, 220 В, 380 В. Следует выбрать вариант 220 вольт.
  3. После сбора схемы электромагнитного пускателя следует подключить силовую часть. На выходе силовых контактов происходит включение электрического двигателя, параллельно присоединяется вход на 220 вольт.
  4. Затем следует подключить кнопки «Стоп» и «Пуск».
  5. На второй вывод электромагнитного пускателя необходимо присоединить «ноль».

Подключение «звездой»

Такой способ подходит для схемы подключения трёхфазного электродвигателя на 380 В. К началу обмоток (С 1, С 2, С 3) подсоединяются фазные проводники (А, В, С) через аппарат коммутации. Концы обмоток необходимо совместить в одной точке.

Такая схема электродвигателя не позволит развить всю его мощность, потому что на каждой обмотке напряжение будет равняться 220 В. Возможность подключить электрический двигатель по схеме «звезда» подтверждается на табличке символом Y.

Эту схема подключения двигателя можно без труда различить в клеммной коробке из-за перемычки, расположенной посреди выводов обмоток.

Соединение «треугольник»

Чтобы трёхфазная электромашина смогла развить максимально предусмотренную мощность, следует применять схему подключения асинхронного двигателя способом «треугольник».

Выводы обмоток необходимо соединить в следующем порядке:

  • С 2 с С 4;
  • С 3 с С 5;
  • С 6 с С 1.

Между проводами в трёхфазных сетях линейное напряжение будет равняться 380 В. С таким вариантом подключения может не справиться проводка, потому что она способствует возникновению пусковых токов. Такое соединение возможно в случае наличия на табличке двигателя значка Δ.

Для полного понимания того, как подключить электродвигатель с 3 проводами, следует знать о комбинированном подключении. В таком случае сперва применяется схема соединения «звездой», затем в рабочем режиме обмотки переключается на «треугольник».

Всегда нужно помнить в процессе работы с электрическими приборами о строгом соблюдении правил техники безопасности. Все действия необходимо производить лишь в режиме обесточенного оборудования.

Читать еще:  Двигатель bud стук холодного

Вентильные двигатели. Виды и устройство. Работа и применение

Электродвигатели, работающие от постоянного тока, обычно обладают более высокими экономическими и техническими характеристиками, по сравнению с двигателями переменного тока. Единственным серьезным недостатком является наличие щеточного механизма, существенно понижающего надежность всей конструкции, повышающего инерционность ротора, взрывоопасность двигателя, а также создает радиопомехи.

Поэтому были созданы бесконтактные двигатели, работающие от постоянного тока, которые получили название вентильные двигатели. Создание такого нового устройства стало возможным, благодаря появлению полупроводников. Щеточный механизм в этой конструкции заменен коммутатором на основе полупроводниковых элементов. Якорь является неподвижным элементом, а на роторе закреплены постоянные магниты.

Устройство и работа

В целом вентильные двигатели включают в себя три подсистемы:

  1. Электронную.
  2. Механическую.
  3. Электрическую.

В результате получается мехатронное устройство, которое позволяет сделать корпус более компактным, избавиться от дополнительных деталей, лишних преобразователей, а соответственно сделать весь привод механизма более надежным.

Вентильный электродвигатель представляет собой измененный вариант коллекторного мотора постоянного тока. Мотор имеет индуктор, расположенный на роторе, обмотка якоря находится на статоре. Электричество подается управляющими командами на статорные обмотки, в зависимости от угла поворота ротора, который определяется встроенными датчиками Холла.

Ротор

Основу этого элемента составляет многополюсный постоянный магнит, который может иметь разное количество пар полюсов (от 2 до 8), с чередованием полюсов. Поначалу для производства роторов применяли ферритовые магниты невысокой стоимости. Однако ферритовые магниты имеют недостаток в том, что у них низкое значение магнитной индукции.

Современные конструкции роторов оснащают магнитами, изготовленными из редкоземельных элементов. Они дают возможность получить большую магнитную индукцию, а также сделать ротор более компактным.

Статор

Вентильный электродвигатель обычно имеет статор, состоящий из 3-х обмоток, соединенных «звездой» без отвода от средней точки, и внешне похожий на статор асинхронного мотора. Существуют вентильные двигатели со статором с большим количеством обмоток, а кроме схемы «звезды» их могут соединять «треугольником». Трехфазная структура обмоток считается наиболее эффективной при наименьшем количестве обмоток.

Если сравнивать две рассмотренные схемы соединения, то схема «звезды» предполагает больший момент вращения и меньшие показатели противо-ЭДС, в отличие от схемы «треугольника». Поэтому «звезду» чаще всего применяют для получения больших крутящих моментов, а «треугольник» — больших скоростей вращения.

Датчики положения и термодатчик

Этот чувствительный элемент создает обратную связь, и определяет положение ротора. Такие датчики могут работать по разным принципам – эффекта Холла, фотоэлектрическому и т.д. Большое распространение получили фотоэлектрические и датчики Холла. Они не имеют инерционности и дают возможность работы без запаздывания при определении положения ротора.

Фотоэлектрический датчик в его стандартном виде имеет три стационарных фотоприемника. Они по очереди закрываются шторкой, которая крутится синхронно ротору. Двоичный код, поступающий от датчиков, фиксирует шесть разных положений ротора. Управляющее устройство преобразует сигналы датчиков в управляющие импульсы напряжений, которые в свою очередь управляют полупроводниковыми ключами.

В каждый рабочий такт мотора включены два силовых ключа, и к электроэнергии подключены две обмотки из трех. Якорные обмотки расположены со сдвигом 120 градусов, и соединены между собой так, что при управлении силовыми ключами образуется вращающееся магнитное поле.

Дополнительно в вентильном двигателе могут иметься термодатчик, тормозной механизм. Тахогенератор используется в случае работы мотора в режиме стабилизации скорости с большой точностью.

Термодатчик служит для предохранения обмоток от перегрева, и включает в себя несколько позисторов, соединенных друг с другом между собой последовательно. Позисторы – резисторы, сопротивление которых зависит от температуры, чем больше температура, тем выше их сопротивление.

Принцип действия

Контроллер вентильного двигателя подключает обмотки статора так, что направление магнитного поля статора всегда перпендикулярно направлению поля ротора. Благодаря широтно-импульсной модуляции контроллер управляет током, который проходит по обмоткам. В результате создается момент вращения ротора, который регулируется.

Виды
Вентильные двигатели бывают постоянного и переменного тока. Кроме того, их разделяют на виды по числу фаз:
  • Однофазные . Это наиболее простая конструкция вентильных двигателей с минимальным числом связей между электронной системой и мотором. К недостаткам однофазных двигателей относятся большие пульсации, невозможность пуска при некоторых положениях ротора. Однофазные моторы широко используются в механизмах, где необходима высокая скорость работы.
  • Двухфазные . Такие вентильные двигатели работают в механизмах, где обязательно наличие связи обмотки и статора. К недостаткам можно отнести большой момент вращения и сильные пульсации, способные привести к отрицательным последствиям.
  • Трехфазные . Эта дисковая конструкция мотора применяется для создания момента вращения, не применяя для этого большое число фаз. Этот вид моторов используется во многих отраслях промышленности, а также в бытовых условиях. Это наиболее распространенная конструкция, по сравнению с другими. Трехфазные двигатели вентильного типа, имеющие четное количество полюсов, стали хорошим вариантом для устройств, где требуется сочетание небольшой скорости и высокой мощности. Недостатками 3-фазных вентильных моторов является высокий уровень шума.
  • 4-фазные . У таких двигателей значительно уменьшен момент вращения и пульсаций. Используются они достаточно редко, так как они имеют высокую стоимость.

Вентильные двигатели применяются во многих областях производства, например, на буровых установках, в системах охлаждения на химических заводах, на нефтяных скважинах.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector