0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вентильный реактивный двигатель своими руками

Вентильный реактивный двигатель

Вентильный реактивный двигатель(ВРД) : Если синхронный реактивный двигатель снабжается датчиком положения ротора, то речь идёт о вентильном реактивном двигателе.

Фото образца вентильного реактивного двигателя

Двигатель питается от преобразователя, который позволяет протекать току в обмотку двигателя через полупроводниковые ключи (вентили). Регулирующая система, которая регистрирует ток и положение ротора соответствующими датчиками, управляет полупроводниковыми ключами. Статор явнополюсный. Противоположные катушки питаются вместе и образуют фазу с северным и южным полюсами. Ротор представляет собой простую похожую на шестерню конструкцию без магнитов и щеток.

Магнитная конфигурация ВРД и принципиальная схема питания

При включении соответствующей полуобмотки на статоре крутящий момент действует на ротор и между обмотками статора и ротором образуется магнитная сила притяжения. Возбуждение катушки в нужный момент времени для создания крутящего момента наиболее эффективным способом обеспечивается системой управления по данным датчика положения ротора. При низком числе оборотов система управления работает в режиме «Choppermodus». При более высоком – управление работает в » режиме пульса «: при соответствующем положении ротора напряжение подается к катушкам на определенный промежуток времени.

Эта гибкость возбуждения двигателя позволяет улучшить качество управления и обеспечить высокую степень эффективности в области большого числа оборотов и крутящего момента. Датчик положения ротора служит также тахометром. Крутящий момент и число оборотов полностью регулируемы, что позволяет оптимально программировать их характеристики в пределах номинальной мощности. До сих пор системы возбуждения вентильного двигателя, из-за отсутствия достаточной стандартизации, могли применяться только в заказных, а не в массовых продуктах.

На цену привода в большей степени влияют величина партии и стандартизация в маркетинге. Для промышленных установок образцовым является IEC-Normmotor с преобразователем частоты. Удельная стоимость составляет примерно 15 евро за килограмм веса двигателя с мощностью в несколько киловатт. У 2-х и 4-х полюсных двигателей – примерно 100 евро за киловатт. Преобразователи частоты стоят при высокой номинальной мощности примерно 200 евро за киловатт, то есть вдвое дороже двигателя.

Цена асинхроного двигателя и преобразователя частоты

Приводная система на основе синхронного двигателя отличается от асинхронного электродвигателя с преобразователем частоты только постоянными магнитами и датчиком положения ротора. Маленький синхронный двигатель более эффективен чем соответствующий асинхронный электродвигатель и может выполнятся компактнее, однако требует дополнительных затраты на магниты. Но не эти затраты обуславливают то, что стоимость приводной системы мощностью 2 кВт на основе синхронного двигателя вдвое больше стоимости соответствующей системы на основе асинхронного двигателя с преобразователем частоты.

Если рассматривают теорию привода, то синхронный двигатель по производительности, динамики и степени эффективности должен был бы выигрывать. При сравнении данных каталога доступных в Швейцарии двигателей преобладание синхронных по фактору мощности не отмечается. Отчетливо видны недостатки привода постоянного тока. Исходя из того, что размер двигателя зависит прежде всего от мощности потерь, фактор мощности является мерой для степени эффективности. У одного из производителей асинхронных электродвигателей бросается в глаза тот факт, что его двигатели имеют хорошую удельную производительность. Производитель объясняет это факт тем, что номинальная мощность постоянно не используется, и эти двигатели классифицируются таким образом. Также относительно степени эффективности выступили уже производители, которые приспосабливают параметры двигателя к потребностям клиентов (к сожалению, только на бумаге). Они рассчитывают на то, что мощность не проверяется или что точность измерения (электрическая мощность ± 1%, механическая мощность ± 2%) заменяется другими характеристиками. Пользователю, который дорого платит за хорошую степень эффективности, рекомендуется требовать гарантию оснащения его машины образцовым приводом с наличием его сравнительных характеристик.

Универсального привода не существует. Все приводные системы имеют свои преимущества и недостатки. С внедрением частотного преобразования были сделаны заявки на исчезновение двигателя постоянного тока, но статистика Швейцарии свидетельствует об обратном. Сравнение систем привода допускает следующее обобщенное высказывание относительно степени эффективности: при мощности до 5 киловатт синхронные двигатели и двигатели постоянного тока лучше чем асинхронные электродвигатели. При мощности более 5 киловатт асинхронный двигатель – это лучшее решение.

Принцип действия двигателя вентильного типа

Работа прецизионных систем требует серьёзного контроля. Для выполнения контролирующих функций в таких системах принято использовать вентильный двигатель (ВД), позволяющий повысить вычислительные возможности микроэлектронного оборудования. Он же улучшает свойства электродвигателей постоянного тока, обеспечивая высокую плотность длительного момента.

  • Конструктивные особенности
  • Принцип действия
  • Преимущества и недостатки
  • Количество фаз

Конструктивные особенности

Этот тип электромотора имеет стандартную конструкцию. Она состоит из ротора, роль которого выполняет магнитный диск, статоров и подшипников. Все детали заключены в прочный корпус. Статор ВД аналогичен тому, что используется в асинхронных приборах. Основным его элементом выступает стальной сердечник, по периметру которого располагается обмотка из меди. От количества обмоток зависит, к какому типу будет относиться вентильный электродвигатель (однофазному, двухфазному, трёхфазному).

В зависимости от того, как витки обмотки располагаются в статоре, форма его электродвижущей силы может быть:

  1. Трапецеидальной (BLDC).
  2. Синусоидальной (PMSM).

Форма обмотки оказывает прямое влияние на способ питания двигателей. Изменение электрического тока также может происходить синусоидально либо трапецеидально.

Ротор представляет собой несколько магнитов с постоянным полем. Ранее для его производства применялись магниты из феррита. Но уровень их магнитной индукции достаточно мал, поэтому они были заменены на изделия из сплавов редкоземельных элементов, позволяющих достичь необходимого уровня индукции и одновременно сделать ротор более компактным.

Неотъемлемой частью любого вентильного двигателя является датчик положения ротора. В основе его работы может быть заложен:

  1. фотоэлектрический принцип;
  2. индуктивный принцип;
  3. эффект Холла и другие явления.

Фотоэлектрический датчик положения состоит из трёх стационарных фотоприемников, которые поочерёдно закрываются вращающейся шторкой. Её движение синхронно движению ротора. Благодаря двоичному коду, поступающему с датчика, ротор может фиксироваться в шести разных положениях. Преобразуясь в комбинацию управляющих напряжений, сигналы регулируют силовые ключи по особой схеме. Каждая фаза работы электродвигателя задействует два ключа, а подключёнными к сети являются две из трёх обмоток.

Читать еще:  Что дают дросселя для двигателя

Датчик положения фотоэлектрического типа относится к категории самых распространённых, поскольку является практически безынерционным. Также он позволяет исключить запаздывание в канале обратной связи.

Принцип действия

В зависимости от особенностей конструкции и технических характеристик выделяют асинхронный, синхронный и индуктивный вентильный двигатель. Принцип работы каждого из них основывается на индуцировании непостоянных магнитных полюсов на роторе. При подаче напряжения начинается его вращение в соответствии с полюсами статора, вследствие чего сопротивление магнитного поля сводится к минимуму.

Сведения о состоянии ротора используются в качестве инструмента управления фазой подачи напряжения. Наложение сигналов на угловую ненасыщенную фазу индуктивности осуществляется таким образом, что её максимальное значение совпадает с минимальным сопротивлением полюса.

Чтобы высокие вольт-секунды не оказывали негативного действия на работающую электронику, следует предусмотреть ограничение фазного тока на невысоких скоростях двигателя. Роль ограничителей в этом случае выполняют датчики. При высоких скоростях необходимость в ограничении тока отпадает.

Выровненный угол управляющего напряжения одиночного импульса позволяет оптимизировать производительность оборудования. Процесс её преобразования наглядно демонстрируется в виде траектории реактивной энергии. Преобразованное в механическую энергию питание отвечает за мощностную область. Отключение электроэнергии приводит к тому, что избыточная либо остаточная энергия переходит к статору. Влияние магнитного поля на работающий вентильный электродвигатель является минимальным. Это отличает ВД от других аналогичных устройств.

Преимущества и недостатки

Электродвигатели такого типа нашли широкое применение в производственной и промышленной сфере. Это обуславливается следующими достоинствами ВД:

  1. широким интервалом для модифицирования частоты вращения;
  2. максимально точным позиционированием;
  3. быстродействием и высокой динамикой;
  4. экономически выгодным техобслуживанием;
  5. достаточной защищенностью от взрывов;
  6. устойчивостью к большим нагрузкам при вращении;
  7. мягким переключением скоростей;
  8. хорошим КПД, превышающим 90%;
  9. большим рабочим ресурсом и сроком службы.

При длительной работе вентильного двигателя не происходит опасного перегрева основных элементов, что делает процесс его эксплуатации более эффективным и безопасным.

Эта разновидность электродвигателя обладает определёнными недостатками. Они выражаются в сложной системе управления и высоком уровне шума в процессе работы. Также к очевидным минусам следует отнести высокую цену, обусловленную применением дорогостоящих постоянных магнитов, используемых при изготовлении ротора.

Количество фаз

Вентильный электродвигатель, как и другие виды устройств, может функционировать от постоянного и переменного тока. Встречаются двигатели, рассчитанные на разное число фаз.

Однофазный относится к категории самых простых, имеющих минимальное количество связей с электроникой. Характеризуется наличием пульсаций, высоким крутящим моментом. Однофазный прибор не может запускаться на всех угловых позициях, используется в установках, где важна высокая скорость.

Двухфазный мотор активирует воздушный зазор, а при дополнительном настраивании в полюсах ротора создаётся асимметрия. Имеет высокий крутящий момент, который может спровоцировать негативные последствия во время эксплуатации.

Трехфазное устройство показывает эффективность при запуске и создании крутящего момента без задействования большого числа фаз. При наличии чётного количества полюсов оптимально подходит для техники, в которой важную роль играет высокая мощность при небольшой скорости работы (к примеру, для насосов). В процессе работы создаётся высокий крутящий момент и большой уровень шума.

Четырехфазный двигатель лишён недостатков из-за завышенного крутящего момента и наличия пульсаций. Однако характерная для него высокая мощность и стоимость не позволяет широко использовать такой мотор в различном оборудовании.

Как сделать реактивный двигатель своими руками: любопытный опыт

Бесклапанный ПуВРД — удивительная конструкция. В ней нет движущихся частей, компрессора, турбины, клапанов. Простейший ПуВРД может обойтись даже без системы зажигания. Этот двигатель способен работать практически на чем угодно: замените баллон с пропаном канистрой с бензином — и он продолжит пульсировать и создавать тягу. К сожалению, ПуВРД оказались несостоятельными в авиации, но в последнее время их всерьез рассматривают как источник тепла при производстве биотоплива. И в этом случае двигатель работает на графитовой пыли, то есть на твердом топливе.

Наконец, элементарный принцип работы пульсирующего двигателя делает его относительно безразличным к точности изготовления. Поэтому изготовление ПуВРД стало излюбленным занятием для людей, неравнодушных к техническим хобби, в том числе авиамоделистов и начинающих сварщиков.

Несмотря на всю простоту, ПуВРД — это все-таки реактивный двигатель. Собрать его в домашней мастерской весьма непросто, и в этом процессе немало нюансов и подводных камней. Поэтому мы решили сделать наш мастер-класс многосерийным: в этой статье мы поговорим о принципах работы ПуВРД и расскажем, как изготовить корпус двигателя. Материал в следующем номере будет посвящен системе зажигания и процедуре запуска. Наконец, в одном из последующих номеров мы обязательно установим наш мотор на самодвижущееся шасси, чтобы продемонстрировать, что он действительно способен создавать серьезную тягу.

От русской идеи до немецкой ракеты

Собирать пульсирующий реактивный двигатель особенно приятно, зная, что впервые принцип действия ПуВРД запатентовал российский изобретатель Николай Телешов еще в 1864 году. Авторство первого действующего двигателя также приписывается россиянину — Владимиру Караводину. Высшей точкой развития ПуВРД по праву считается знаменитая крылатая ракета «Фау-1», состоявшая на вооружении армии Германии во время Второй мировой войны.

Конечно же, речь идет о клапанных пульсирующих двигателях, принцип действия которых понятен из рисунка. Клапан на входе в камеру сгорания беспрепятственно пропускает в нее воздух. В камеру подается топливо, образуется горючая смесь. Когда свеча зажигания поджигает смесь, избыточное давление в камере сгорания закрывает клапан. Расширяющиеся газы направляются в сопло, создавая реактивную тягу. Движение продуктов сгорания создает в камере технический вакуум, благодаря которому клапан открывается, и в камеру всасывается воздух.

В отличие от турбореактивного двигателя, в ПуВРД смесь горит не непрерывно, а в импульсном режиме. Именно этим объясняется характерный низкочастотный шум пульсирующих моторов, который делает их неприменимыми в гражданской авиации. С точки зрения экономичности ПуВРД также проигрывают ТРД: несмотря на впечатляющее отношение тяги к массе (ведь у ПуВРД минимум деталей), степень сжатия в них достигает от силы 1,2:1, поэтому топливо сгорает неэффективно.

Читать еще:  Во время дождя троит двигатель

Зато ПуВРД бесценны как хобби: ведь они могут обходиться вообще без клапанов. Принципиально конструкция такого двигателя представляет собой камеру сгорания с подсоединенными к ней входной и выходной трубами. Входная труба гораздо короче выходной. Клапаном в таком двигателе служит не что иное, как фронт химических превращений.

Горючая смесь в ПуВРД сгорает с дозвуковой скоростью. Такое горение называется дефлаграцией (в отличие от сверхзвукового — детонации). При воспламенении смеси горючие газы вырываются из обеих труб. Именно поэтому и входная, и выходная трубы направлены в одну сторону и сообща участвуют в создании реактивной тяги. Но за счет разницы длин в тот момент, когда давление во входной трубе падает, по выходной еще движутся выхлопные газы. Они создают разрежение в камере сгорания, и через входную трубу в нее затягивается воздух. Часть газов из выходной трубы также направляется в камеру сгорания под действием разрежения. Они сжимают новую порцию горючей смеси и поджигают ее.

Вентильный реактивный двигатель своими руками

Предприятие из Кремниевой долины Turntide Technologies заявило о получении инвестиций на сумму 80 миллионов долларов США. Раунд финансирования возглавил основанный Биллом Гейтсом Breakthrough Energy Ventures.

Среди прочих инвесторов фигурируют Amazon Climate Pledge Fund и основанный Робертом Дауни-младшим Footprint Coalition Ventures. Общий капитал Turntide Technologies теперь составляет 180 миллионов долларов.

Райан Моррис, глава Turntide Technologies, подчеркивает, что главная цель его компании и инвесторов — применение современных технологий для борьбы с изменением климата.

Основная разработка Turntide Technologies — вентильный реактивный электродвигатель (ВРД или SRM) Smart Motor. Это бесколлекторная синхронная машина. Ее ротор из магнитомягкого материала приводится в движение благодаря вращающемуся магнитному полю от обмоток статора, на которые управляемо подаются импульсы напряжения.

Широкому распространению таких моторов препятствует, помимо прочего сложность управления питанием обмоток. Поэтому, например, украинская Murmuration Technology в реактивных электродвигателях для своей линейки электромобилей CoolOn заменила независимые обмотки на недорогие трехфазные блоки.

Новый тип электродвигателя обладает следующими достоинствами:

  • Простая конструкция и высокая ремонтопригодность
  • Отсутствие механического коммутатора
  • Отсутствие постоянных магнитов и малое количество меди
  • Низкая трудоёмкость изготовления
  • Электронное управление электрическими и механическими характеристиками, режимом работы
  • Низкая стоимость электромеханического преобразователя
  • Широкий диапазон частот вращения (от единиц до сотен тысяч об/мин)

Turntide Technologies добилась высокой эффективности ВРД с помощью своей «облачной» программной платформы, оптимизирующей управление мотором. Разработкой предприятия уже воспользовались Amazon, BMW, консалтинговая компания JLL, американская сеть ресторанов фастфуда Five Guys, сеть супермаркетов Sprouts, поставщик светодиодного освещения Pacific Energy Concepts.

Smart Motor применяется в климатических установках офисных зданий этих организаций, снижая в среднем на 64% затраты электроэнергии на работу электроприводов систем отопления и кондиционирования. Кроме того, Turntide совместно с VES-Artex использовала Smart Motor в системе освещения, вентиляции и кондиционирования в коровниках.

Как заявляет Turntide Technologies, полученные в последнем инвестиционном раунде средства будут направлены на дальнейшее совершенствование и расширение производства Smart Motor и систем на его основе, а также на развитие облачного программного обеспечения для автоматизации зданий Riptide IO, недавно приобретенного компанией.

А вы что думаете по этому поводу? Дайте нам знать – напишите в комментариях!

  • Назад
  • Вперёд

Понравилась статья? Поделитесь ею и будет вам счастье!

Вентильный реактивный двигатель SRM. Снижение пульсации момента.

Вентильный реактивный двигатель (switched reluctance motor SRM ) является потенциальным кандидатом для использования его в качестве тягового двигателя электромобиля следующего поколения из-за его низкой стоимости, высокой эффективности, способности работать при высоких температурах и в других жестких условиях. Тем не менее, SRM имеют существенный недостаток – это пульсации вращающего момента, что может создавать неприятный шум в транспортных средствах. Компания Continuous Solutions использовала программное обеспечение ANSYS Maxwell для электромагнитного моделирования. В результате удалось снизить пульсации вращающего момента электрической машины на 90 процентов и общий шум на 50 процентов, что позволяет использовать SRM для электрификации транспортных средств сельскохозяйственной, горнодобывающей техники, а также для гражданского применения

Концепция коммутируемого реактивного двигателя ( SRM ) существует уже 180 лет, но до недавнего времени двигатели этого типа использовалась только в промышленных целях из-за сложной системы управления. За последние десять лет мощные микроконтроллерные интегральные схемы и вычислительно-интенсивные стратегии управления сделали SRM более жизнеспособными. Нерешенной проблемой является излучение SRM значительного шума во время работы, который недопустим в таких приложениях, как роскошные легковые автомобили, тактические транспортные средства и другие машины в суровых условиях эксплуатации.

Инженеры Continuous Solutions решают перечисленные проблемы, создавая виртуальные прототипы перспективных конструкций SRM в программном обеспечении моделирования электромагнитного поля ANSYS Maxwell. Алгоритмы управления для подавления пульсаций вращающего момента создаются и исследуются в симуляторе системного уровня ANSYS TwinBuilder , в качестве объекта управления выступает модель SRM в ANSY S Maxwell . Оптимизация пульсаций момента существенно снижает общий шум и вибрацию двигателя.

В итоге электрические машины SRM типа на 20 процентов дешевле, рабочие температуры на 50 процентов выше, чем у аналогичных двигателей с постоянными магнитами.

SRM

В основе работы SRM лежит магнитный поток. Магнитные поля аналогичны электрическому току и предпочитают путешествовать по пути наименьшего магнитного сопротивления потоку. Это объясняет, почему магнитные материалы с низким магнитным сопротивлением, такие как железо и сталь, имеют сильную тенденцию выравниваться с магнитным полем. На статоре SRM расположены концентрические обмотки фаз, а его ротор изготовлен из материала с низким магнитным сопротивлением с чередующимися зонами высокого и низкого сопротивления. При подаче напряжения на обмотку статора, магнитное сопротивление ротора создает силу, которая пытается выровнять полюс ротора, пик низкого сопротивления, с ближайшим полюсом статора. В SRM вращение поддерживается путем последовательного включения и выключения обмоток статора, таким образом, что каждое новое состояние магнитного поля статора вызывает поворот ротора.

Читать еще:  Двигатель bfm что это

Модель SRM в ANSYS Maxwell

Схема асимметричного мостового преобразователя и полученные формы кривых SRM

Ротор может быть изготовлен цельным стальным или набран из тонких стальных штамповок с выемками для магнитных полюсов. Отсутствие постоянных магнитов и обмоток на роторе делает SRM значительно дешевле в производстве чем обычные электродвигатели с постоянными магнитами. В роторе отсутствует токонесущие конструкции, поэтому нет необходимости в коммутаторах и обмотках якоря, как в двигателе постоянного тока, либо в короткозамкнутой обмотке из литого металла, как в асинхронном двигателе. Кроме того, отсутствие постоянных магнитов и обмоток ротора позволяет SRM работать при более высоких температурах окружающей среды, что очень важно в тяговых двигателях транспортных средств.

Пульсации момента

Одна из самых больших проблем при разработке SRM состоит в том, что индуктивность каждой фазы пропорциональна степени совмещения её с полюсами ротора. Избыточная вибрация и акустический шум возникают из-за структурной деформации и гармонических магнитных моментов, возникающих в результате взаимодействия статора и ротора. К этому добавляется относительное резкое изменение индуктивности в зависимости от положения ротора и нелинейного управления.

Результаты ANSYS Maxwell показывают зависимость потокосцепления и вращающего момента, как функции от положения ротора, при различной нагрузке

Эти взаимодействия проявляются как изменения вращающего момента, известные как пульсации вращающего момента. С точки зрения конструкции двигателя, например, дисбаланс в роторе или статоре, также могут вызывать пульсации вращающего момента. Все эти причины приводят к вибрации двигателя, которая создаёт акустический шум и сокращает срок службы механических узлов.

При разработке нового тягового двигателя целью Continuous Solutions являлось создание более дешевого двигателя и привода, которые могут работать при более высоких температурах, чем обычные двигатели с постоянными магнитами, в то же время достигая высоких показателей эффективности, плотности мощности и шума, равных двигателям с постоянными магнитами. Инженеры Continuous Solutions начали с использования собственной многоцелевой пользовательской программы оптимизации трехмерных магнитных эквивалентных цепей ( MEC ) для ускорения процесса исследования пространства проектирования и нахождения перспективных конструкций для дальнейшего исследования. Программа использует генетический алгоритм для изучения различных параметров конструкции, таких как высота зубца статора, ток возбуждения и число пар полюсов, итеративно улучшая цели проектирования, такие как повышение эффективности и уменьшение массы.

Моделирование SRM

Инженеры Continuous Solutions разработали детальные модели перспективных вариантов SRM, определенных программой оптимизации в ANSYS Maxwell . Использовался шаблонно-ориентированный инструмент проектирования RMxprt для быстрого определения геометрии двигателя. Вместо того чтобы рисовать компоненты двигателя, использовались возможности параметрического проектирования в RMxprt для определения магнитной системы SRM : количество полюсов и обмоточные данные и т.д. Корпус двигателя также добавляется к модели с помощью стандартных инструментов.

Векторный график магнитной индукции в сечении SRM

Трехмерная геометрическая модель автоматически создаётся в ANSYS Maxwell для детального анализа магнитного поля методом конечных элементов. Модель содержит все необходимые настройки: движение ротора, механическая нагрузка, коэффициенты потерь в шихтованных стальных пакетах, обмотки фаз, схема управления и многое другое. ANSYS Maxwell рассчитывает рабочие характеристики: вращающий момент в зависимости от скорости, потери мощности, индукция в воздушном зазоре, коэффициент мощности и КПД. Максвелл подготовил отчет о крутящем моменте, который показал вращающий момент двигателя в ньютон-метрах как функцию угла поворота. Для более детального диагностического рассмотрения график магнитной индукции строится в поперечном сечении ротора и статора в ключевые моменты, когда вращающий момент достигает своих экстремумов. Графики показывают, что одним из основных источников шума был является, сжимаемый к ротору силами притяжения, действующими на каждую пару полюсов. Решением этой проблемы может стать усиление статора, но это увеличивает стоимость и вес двигателя.

Разработка системы управления

Вместо того, чтобы искать конструкционное решение для минимизации пульсаций момента, вибрации, Continuous Solutions разработали алгоритм управления для подачи тока в обычно неактивные обмотки в точное время, чтобы нейтрализовать отклоняющиеся векторы силы от активных полюсов. Они разработали алгоритм управления в своих собственных аналитических инструментах и встроили его в обычный инвертор SRM , собранный в ANSYS TwinBuilder. Инвертор в TwinBuilder был подключен к модели двигателя ANSYS Maxwell , рассматривалось взаимодействие SRM со схемой управления с разработанным алгоритмом. Детальные графики нестационарного режима позволили инженерам Continuous Solutions сгладить колебания вращающего момента: как только ротор SRM собирается дергаться влево, контроллер вводит сигнал для рывка вправо, подавляя сопротивление движению в нужном направлении, удаляя волну пульсаций вращающего момента.

Контроллер Continuous Solutions 100 kW SRM MILSPEC с технологией снижения пульсаций вращающего момента

Была усовершенствована как конструкция двигателя, так и алгоритм управления, пока интегрированный двигатель и алгоритм управления не достигли всех поставленных целей. Такой подход позволил за несколько итераций завершить проектирование .

Инженеры Continuous Solutions создали и испытали прототип новой конструкции двигателя. Производительность соответствовала результатам моделирования. Кроме того, для непрерывного производства компания Continuous Solutions заключила стратегическое партнерство с Nidec Motor Corporation , чтобы сделать эту технологию коммерчески доступной. Новый двигатель на 20-50 процентов дешевле, работает на 50 процентов более высоких температурах, чем похожие двигатели с постоянными магнитами, предлагая сопоставимую эффективность, плотность мощности и шумовые характеристики.

График зависимости потокосцепления, как функция от тока и положения ротора

График зависимости момента, как функция от тока и положения ротора

Снижение пульсации крутящего момента в SRM, обеспечиваемое контроллером Continuous Solutions Torque Riple Mitigation

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты