Виды работы авто двигателей - Автомобильный журнал
Arskama.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Виды работы авто двигателей

Двигатель автомобиля

Двигатель внутреннего сгорания (ДВС) – одно из главных устройств в конструкции автомобиля, служащее для преобразования энергии топлива в механическую энергию, которая, в свою очередь, выполняет полезную работу. Принцип работы двигателя внутреннего сгорания построен на том, что топливо в соединении с воздухом образуют воздушную смесь. Циклически сгорая в камере сгорания, воздушно-топливная смесь обеспечивает высокое давление, направленное на поршень, а тот, в свою очередь, вращает коленчатый вал через кривошипно-шатунный механизм. Его энергия вращения передается трансмиссии автомобиля.

Для запуска двигателя внутреннего сгорания часто используется стартер – обычно электрический двигатель, проворачивающий коленвал. В более тяжелых дизельных двигателях в качестве стартера и для той же цели применяется вспомогательный ДВС («пускач»).

Существуют следующие типы двигателей (ДВС):

  1. бензиновые
  2. дизельные
  3. газовые
  4. газодизельные
  5. роторно-поршневые

Также ДВС классифицируются: по виду топлива, по числу и расположению цилиндров, по способу формирования топливной смеси, по количеству тактов работы двигателя внутреннего сгорания и т.д.

Бензиновые и дизельные двигатели

Бензиновые двигатели внутреннего сгорания – наиболее распространенные из автомобильных двигателей. Топливом для них служит бензин . Проходя через топливную систему, бензин попадает через распыляющие форсунки в карбюратор или впускной коллектор, а затем эта воздушно-топливная смесь подается в цилиндры, сжимается под воздействием поршневой группы, поджигается искрой от свечей зажигания.

Карбюраторная система считается устаревшей, поэтому сейчас повсеместно используется инжекторная система подачи топлива. Распыляющие топливо форсунки (инжекторы) осуществляют впрыск либо непосредственно в цилиндр, либо во впускной коллектор. Инжекторные системы делятся на механические и электронные. Во-первых для дозации топлива используются механические рычаговые механизмы плунжерного типа, с возможностью электронного контроля топливной смеси. Во вторых процесс составления и впрыска топлива полностью возложен на электронный блок управления (ЭБУ). Инжекторные системы необходимы для более тщательного сгорания топлива и минимизации вредных продуктов горения.

Дизельные ДВС используют специальное дизтопливо . Двигатели автомобиля подобного типа не имеют системы зажигания: топливная смесь, попадающая в цилиндры через форсунки, способна взрываться под действием высокого давления и температуры, которые обеспечивает поршневая группа.

Газовые двигатели

Газовые двигатели используют газ в качестве топлива – сжиженный, генераторный, сжатый природный. Распространение таких двигателей было обусловлено растущими требованиями к экологической безопасности транспорта. Исходное топливо хранится в баллонах под большим давлением, откуда через испаритель попадает в газовый редуктор, теряя давление. Далее процесс аналогичен инжекторным бензиновым ДВС. В некоторых случаях газовые системы питания могут не использовать в своем составе испарители.

РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:

Устройство автомобилей

Классификация автомобильных двигателей

К двигателям, устанавливаемым на автомобилях, предъявляются определенные требования, которые зависят и от условий полной автономности этих транспортных средств, и от их конкретного назначения (типа автомобиля) . В любом случае, двигатель автомобиля должен иметь минимальные габариты и массу при достаточной развиваемой мощности и высокой экономичности, а также не представлять угрозу безопасности людей и окружающей природы.

Как уже упоминалось в предыдущей статье, на автомобилях наибольшее распространение получили тепловые двигатели, преобразующие энергию тепла от сгорания топлива в механическую энергию движения. Применение двигателей других типов, способных использовать для работы прочие виды энергии, ограничено рядом причин, среди которых наиболее веская – технологическая.

Тепловая энергия является доступной, ее можно легко извлечь из любого калорийного топлива, но самое главное – тепловую энергию в виде топлива можно в достаточном количестве запасти в дорогу. Ведь автомобиль – это автономное средство передвижения, и если его, например, «привязать» проводами к емкому источнику электроэнергии, то он лишится автономности.
Сложно запастись в дорогу и другими видами энергии, например, энергией сжатого газа, потока жидкости, солнечного света и т. п.
Применение в автомобильных двигателях ядерной энергии на современном уровне развития науки и технологий обойдется слишком дорого, а в условиях массовой эксплуатации — небезопасно.
Поэтому основное препятствие на пути использования других видов энергии вместо тепловой в автомобильных двигателях – отсутствие емких аккумуляторов энергии, способных поддерживать работу двигателя длительное время.

Все тепловые двигатели по способу подвода тепла к рабочему телу делят на два типа:

  • тепловые двигатели внутреннего сгорания (ДВС) ;
  • тепловые двигатели с внешним подводом теплоты.

На современных автомобилях в подавляющем большинстве применяется первый тип двигателей, который отличается тем, что тепло к газообразному рабочему телу подводится непосредственно в самом двигателе путем сжигания смеси топлива с кислородом воздуха.
К двигателям второго типа, использующим для работы рабочее тело, нагретое вне двигателя, относятся, например, паровые машины, которые в настоящее время почти не используются по ряду причин:

  • высокая удельная металлоемкость на единицу полученной механической энергии;
  • низкий КПД;
  • относительно долгая подготовка к работе и т. д.

Рядом технологических причин ограничивается использование в качестве автомобильных двигателей газовых турбин, которые подразделяются на турбины внешнего сгорания и турбины внутреннего сгорания.
Двигатель Стирлинга, который по принципу действия относится к двигателям внешнего сгорания, тоже не получил признания в массовом автомобильном производстве.

По конструкции тепловые двигатели классифицируют на следующие типы:

  • поршневые;
  • роторно-поршневые;
  • газотурбинные;
  • реактивные.

Наибольшее распространение на автомобилях получили поршневые двигатели внутреннего сгорания, которые в свою очередь классифицируются по следующим признакам:

По способу воспламенения рабочего тела :

  • с искровым (принудительным) воспламенением;
  • с воспламенением от сжатия (самовоспламенением) .

К первому типу относятся двигатели, использующие специальную систему воспламенения рабочего тела (систему зажигания) . К таковым относятся, например, карбюраторные, инжекторные и газовые двигатели.
Ко второму типу относятся дизельные двигатели, в которых топливо самовоспламеняется из-за сильного нагрева при высокой степени сжатия.

По виду используемого топлива :

  • работающие на жидком топливе (бензин, дизтопливо, керосин) ;
  • работающие на газообразном топливе.

По способу смесеобразования :

  • с внешним смесеобразованием;
  • с внутренним смесеобразованием.

К двигателям с внешним смесеобразованием (т. е. смешиванием топлива с кислородом воздуха вне цилиндра) относятся карбюраторные двигатели и двигатели с центральным и распределенным впрыском бензина, а к двигателям с внутренним смесеобразованием – дизельные и инжекторные двигатели непосредственного впрыска, в которых топливо и воздух поступают в цилиндр раздельно, и в дальнейшем смешиваются, образуя рабочую смесь.

По регулированию мощности :

  • количественное регулирование;
  • качественное регулирование.
Читать еще:  Ассинхронные двигатели тех характеристики

При количественном регулировании мощность двигателя изменяется вследствие изменения общего количества топливовоздушной смеси, подаваемой в цилиндр.
При качественном регулировании мощность изменяется количеством впрыскиваемого в цилиндр топлива при неизменном количестве подаваемого воздуха.

По характеру и последовательности термодинамических процессов в цилиндрах двигателя:

  • двухтактные;
  • четырехтактные.

Термодинамические процессы, имеющие место в тепловых двигателях, а также пути повышения их эффективности (КПД) рассмотрены в статьях раздела «Основы гидравлики и теплотехники». Там же можно найти информацию об истории изобретения тепловых двигателей, применяемых на автомобилях.

Двигатель внутреннего сгорания

В настоящее время двигатель внутреннего сгорания является основным видом автомобильного двигателя. Двигателем внутреннего сгорания (сокращенное наименование – ДВС) называется тепловая машина, преобразующая химическую энергию топлива в механическую работу.

Различают следующие основные типы двигателей внутреннего сгорания: поршневой, роторно-поршневой и газотурбинный. Из представленных типов двигателей самым распространенным является поршневой ДВС, поэтому устройство и принцип работы рассмотрены на его примере.

Достоинствами поршневого двигателя внутреннего сгорания, обеспечившими его широкое применение, являются: автономность, универсальность (сочетание с различными потребителями), невысокая стоимость, компактность, малая масса, возможность быстрого запуска, многотопливность.

Вместе с тем, двигатели внутреннего сгорания имеют ряд существенных недостатков, к которым относятся: высокий уровень шума, большая частота вращения коленчатого вала, токсичность отработавших газов, невысокий ресурс, низкий коэффициент полезного действия.

В зависимости от вида применяемого топлива различают бензиновые и дизельные двигатели. Альтернативными видами топлива, используемыми в двигателях внутреннего сгорания, являются природный газ, спиртовые топлива – метанол и этанол, водород.

Водородный двигатель с точки зрения экологии является перспективным, т.к. не создает вредных выбросов. Наряду с ДВС водород используется для создания электрической энергии в топливных элементах автомобилей.

Устройство двигателя внутреннего сгорания

Поршневой двигатель внутреннего сгорания включает корпус, два механизма (кривошипно-шатунный и газораспределительный) и ряд систем (впускную, топливную, зажигания, смазки, охлаждения, выпускную и систему управления).

Корпус двигателя объединяет блок цилиндров и головку блока цилиндров. Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Газораспределительный механизм обеспечивает своевременную подачу в цилиндры воздуха или топливно-воздушной смеси и выпуск отработавших газов.

Впускная система предназначена для подачи в двигатель воздуха. Топливная система питает двигатель топливом. Совместная работа данных систем обеспечивает образование топливно-воздушной смеси. Основу топливной системы составляет система впрыска.

Система зажигания осуществляет принудительное воспламенение топливно-воздушной смеси в бензиновых двигателях. В дизельных двигателях происходит самовоспламенение смеси.

Система смазки выполняет функцию снижения трения между сопряженными деталями двигателя. Охлаждение деталей двигателя, нагреваемых в результате работы, обеспечивает система охлаждения. Важные функции отвода отработавших газов от цилиндров двигателя, снижения их шума и токсичности предписаны выпускной системе.

Система управления двигателем обеспечивает электронное управление работой систем двигателя внутреннего сгорания.

Работа двигателя внутреннего сгорания

Принцип работы ДВС основан на эффекте теплового расширения газов, возникающего при сгорании топливно-воздушной смеси и обеспечивающего перемещение поршня в цилиндре.

Работа поршневого ДВС осуществляется циклически. Каждый рабочий цикл происходит за два оборота коленчатого вала и включает четыре такта (четырехтактный двигатель): впуск, сжатие, рабочий ход и выпуск.

Во время тактов впуск и рабочий ход происходит движение поршня вниз, а тактов сжатие и выпуск – вверх. Рабочие циклы в каждом из цилиндров двигателя не совпадают по фазе, чем достигается равномерность работы ДВС. В некоторых конструкциях двигателей внутреннего сгорания рабочий цикл реализуется за два такта – сжатие и рабочий ход (двухтактный двигатель).

На такте впуск впускная и топливная системы обеспечивают образование топливно-воздушной смеси. В зависимости от конструкции смесь образуется во впускном коллекторе (центральный и распределенный впрыск бензиновых двигателей) или непосредственно в камере сгорания (непосредственный впрыск бензиновых двигателей, впрыск дизельных двигателей). При открытии впускных клапанов газораспределительного механизма воздух или топливно-воздушная смесь за счет разряжения, возникающего при движении поршня вниз, подается в камеру сгорания.

На такте сжатия впускные клапаны закрываются, и топливно-воздушная смесь сжимается в цилиндрах двигателя.

Такт рабочий ход сопровождается воспламенением топливно-воздушной смеси (принудительное или самовоспламенение). В результате возгорания образуется большое количество газов, которые давят на поршень и заставляют его двигаться вниз. Движение поршня через кривошипно-шатунный механизм преобразуется во вращательное движение коленчатого вала, которое затем используется для движения автомобиля.

При такте выпуск открываются выпускные клапаны газораспределительного механизма, и отработавшие газы удаляются из цилиндров в выпускную систему, где производится их очистка, охлаждение и снижение шума. Далее газы поступают в атмосферу.

Рассмотренный принцип работы двигателя внутреннего сгорания позволяет понять, почему ДВС имеет небольшой коэффициент полезного действия — порядка 40%. В конкретный момент времени как правило только в одном цилиндре совершается полезная работа, в остальных – обеспечивающие такты: впуск, сжатие, выпуск.

Назначение и типы автомобильных двигателей

Главная > Реферат >Транспорт

Министерство образования Российской Федерации

Санкт-Петербургский государственный университет

сервиса и экономики

Тема: «Назначение и типы автомобильных двигателей»

Выполнил студент 3-ого курса

1. Основные типы двигателей

2. Основные определения и параметры двигателя

3. Рабочий процесс (цикл) четырехтактных двигателей

4. Порядок работы двигателя

5. Внешняя скоростная характеристика двигателя

Список использованной литературы

Двигатель автомобиля представляет собой совокупность механизмов и систем, преобразующих тепловую энергию сгорающего в его цилиндрах топлива в механическую. На современных автомобилях наибольшее распространение получили поршневые двигатели внутреннего сгорания, в которых расширяющиеся при сгорании топлива газы воздействуют на движущиеся в их цилиндрах поршни. Бензиновые двигатели работают на легком жидком топливе — бензине, который получают из нефти. Дизельные двигатели работают на тяжелом жидком топливе — дизельном, получаемом также из нефти. Из указанных двигателей наиболее мощными являются бензиновые, наиболее экономичными и экологичными — дизели, имеющие более высокий коэффициент полезного действия. Так, при равных условиях расход топлива у дизелей на 25 . 30% меньше, чем у бензиновых двигателей.

У двигателей с внешним смесеобразованием горючая смесь готовится вне цилиндров, в специальном приборе — карбюраторе (карбюраторные двигатели) или во впускном трубопроводе (двигатели с впрыском бензина) и поступает в цилиндры в готовом виде. У двигателей с внутренним смесеобразованием (дизели, двигатели с непосредственным впрыском бензина) приготовление горючей смеси производится непосредственно в цилиндрах путем впрыска в них топлива. В двигателях без наддува наполнение цилиндров осуществляется за счет вакуума, создаваемого в цилиндрах при движений поршней из верхнего крайнего положения в нижнее. В двигателях с наддувом горючая смесь поступает в цилиндры под давлением, которое создается компрессором. Принудительное воспламенение горючей смеси от электрической искры, возникающей в свечах зажигания, производится в бензиновых двигателях, а воспламенение от сжатия (самовоспламенение) — в дизелях.

Читать еще:  Чем больше момент двигателя автомобиля

1. Основные типы двигателей

Применяемые на автомобилях двигатели подразделяются на типы по различным признакам (рис.1).

Рис.1. Основные типы автомобильных двигателей, классифицированных по различным признакам

У четырехтактных двигателей полный рабочий процесс (цикл) совершается за четыре такта (впуск, сжатие, рабочий ход, выпуск), которые последовательно повторяются при работе двигателей. Рядные двигатели имеют цилиндры, расположенные в один ряд вертикально или под углом 20. 40° к вертикали. V -образные двигатели имеют два ряда цилиндров, расположенных под углами 60, 75° и чаще 90е. V -образный двигатель с углом 180° между рядами цилиндров называется оппозитным. Двух-, трех-, четырех- и пятицилиндровые двигатели выполняются обычно рядными, а шести-, восьми- и многоцилиндровые — V -образными. В двигателях с жидкостным охлаждением в качестве охлаждающего вещества используют антифризы (низкозамерзающие жидкости), температура замерзания которых -40 °С и ниже. В двигателях с воздушным охлаждением охлаждающим веществом является воздух. Большинство двигателей имеет жидкостное охлаждение, так как оно наиболее эффективное.

2. Основные определения и параметры двигателя

Рассмотрим основные параметры двигателя, связанные с его работой (рис. 2). Верхняя мертвая точка (ВМТ) — крайнее верхнее положение поршня. В этой точке поршень наиболее удален от оси коленчатого вала. Нижняя мертвая точка (НМТ) — крайнее нижнее положение поршня. Поршень наиболее приближен к оси коленчатого вала. В мертвых точках поршень меняет направление движения, и его скорость равна нулю. Ход поршня ( S ) — расстояние между мертвыми точками, проходимое поршнем в течение одного такта рабочего цикла двигателя. Каждому ходу поршня соответствует поворот коленчатого вала на угол 180° (пол-оборота). Такт — часть рабочего цикла двигателя, происходящего при движении поршня из одного крайнего положения в другое. Рабочий объем цилиндра ( Vk ) — объем, освобождаемый поршнем при его перемещении от ВМТ до НМТ. Объем камеры сгорания ( Vc ) — объем пространства над поршнем, находящимся в ВМТ. Полный объем цилиндра ( Va ) — объем пространства над поршнем, находящимся в НМТ:

Рабочий объем (литраж) двигателя — сумма рабочих объемов всех цилиндров двигателя, выраженная в литрах (см 3 ). Степень сжатия ( s ) — отношение полного объема цилиндра к объему камеры сгорания, т.е. s = Va / Vc

Рис.2. Основные параметры двигателя

Степень сжатия показывает, во сколько раз сжимается смесь в цилиндре двигателя при ходе поршня из НМТ в ВМТ. При повышении степени сжатия увеличивается мощность двигателя и улучшается его экономичность. Однако повышение степени сжатия ограничено качеством применяемого топлива и увеличивает нагрузки на детали двигателя. Степень сжатия для бензиновых двигателей современных легковых автомобилей составляет 8 — 10, а для дизелей 15 — 22. При таких степенях сжатия в бензиновых двигателях не происходит самовоспламенение смеси, а в дизелях, наоборот, самовоспламенение смеси обеспечивается. Ход S поршня и диаметр D цилиндра определяют размеры двигателя. Если отношение S / D 3. Рабочий процесс (цикл) четырехтактных двигателей

Рабочий процесс (цикл) четырехтактных двигателей состоит из тактов впуска, сжатия, рабочего хода и выпуска. Рабочий процесс происходит за четыре хода поршня или за два оборота коленчатого вала. Рассмотрим протекание рабочего цикла бензинового двигателя. При такте впуска (рис.3, а) поршень -/движется от ВМТ к НМТ. Выпускной клапан 5 закрыт. Под действием вакуума, создаваемого при движении поршня, в цилиндр 3 поступает горючая смесь (бензина и воздуха) через впускной клапан 7, открытый распределительным валом 6.

Рис. 2.3. Схема рабочего процесса четырехтактного бензинового двигателя: а — впуск; 6 — сжатие; в — рабочий ход; г — выпуск; / — коленчатый вал; 2 — шатун; 3 — цилиндр; 4 — поршень; 5 — выпускной клапан; 6 — распределительный вал; 7 — впускной клапан

Горючая смесь перемешивается с остаточными отработавшими газами, образуя при этом рабочую смесь. В конце такта впуска давление в цилиндре составляет 0,08. 0,09 МПа, а температура рабочей смеси – 80. 120 °С. Такт сжатия (рис.3, б) происходит при перемещении поршня от НМТ к ВМТ. Впускной и выпускной клапаны закрыты. Объем рабочей смеси уменьшается, а давление в цилиндре повышается и в конце такта сжатия составляет 0,9. 1,5 МПа. Повышение давления сопровождается увеличением температуры рабочей смеси до 450. 500°С. При такте рабочего хода (рис.3, в) впускной и выпускной клапаны закрыты. Воспламененная в конце такта сжатия от свечи зажигания рабочая смесь быстро сгорает (в течение 0,001 . 0,002 с). Температура и давление образовавшихся газов в цилиндре возрастают соответственно до 2200. 2500°С и 4. 5,5 МПа. Газы давят на поршень, он движется от ВМТ до НМТ и совершает полезную работу, вращая через шатун 2 коленчатый вал 1. По мере перемещения поршня к НМТ и увеличения объема пространства над ним давление в цилиндре уменьшается и в конце такта составляет 0,35. 0,45 МПа. Снижается и температура газов до 900..Л200 °С. Такт выпуска (рис. 3, г) происходит при движении поршня от НМТ к ВМТ. Впускной клапан закрыт. Отработавшие газы вытесняются поршнем из цилиндра через выпускной клапан, открытый распределительным валом. Давление и температура в цилиндре уменьшаются и в конце такта составляют 0,1 . 0,12 МПа и 700. 800°С. Из рассмотренного рабочего процесса (цикла) следует, что полезная работа совершается только в течение одного такта — рабочего хода. Остальные три такта (впуск, сжатие, выпуск) являются вспомогательными, и на их осуществление затрачивается часть энергии, накопленной маховиком двигателя, который установлен на заднем конце коленчатого вала, при рабочем ходе. Рабочий процесс четырехтактного дизеля существенно отличается от рабочего цикла бензинового двигателя по смесеобразованию и воспламенению рабочей смеси. Основное различие рабочих циклов состоит в том, что в цилиндры дизеля при такте впуска поступает не горючая смесь, а воздух, и при такте сжатия в цилиндры впрыскивается мелкораспыленное топливо, которое самовоспламеняется под действием высокой температуры сжатого воздуха. Рассмотрим более подробно рабочий цикл дизеля. Такт впуска (рис.4, а) осуществляется при движении поршня 2 от ВМТ к НМТ. Выпускной клапан 6 закрыт. Вследствие образовавшегося вакуума в цилиндр 7 через воздушный фильтр 4 и открытый впускной клапан 5 поступает воздух из окружающей среды. В конце такта впуска давление в цилиндре составляет 0,08. 0,09 МПа, а температура — 40. 60°С.

Читать еще:  Частота оборотов двигателя норма

Рис. 4. Схема рабочего процесса четырехтактного дизеля: а — впуск; б — сжатие; в — рабочий ход; г — выпуск; 1 — топливный насос; 2 —поршень; 3 — форсунка; 4 — воздушный фильтр; 5 — впускной клапан; 6 —выпускной клапан; 7 — цилиндр; 8 — шатун; 9 — коленчатый вал

При такте сжатия (рис. 4, б) поршень движется от НМТ до ВМТ. Впускной и выпускной клапаны закрыты. Поршень сжимает находящийся в цилиндре воздух, и его температура в конце такта сжатия достигает 550. 700 °С при давлении 4. 5 МПа. При такте рабочего хода (рис.4, в) поршень подходит к ВМТ, и в цилиндр двигателя из форсунки 3 под большим давлением впрыскивается распыленное дизельное топливо, подаваемое топливным насосом 1 высокого давления. Впрыснутое топливо перемешивается с нагретым воздухом, и образовавшаяся смесь самовоспламеняется. При этом резко возрастают у образовавшихся газов температура до 1800. 2000°С и давление до 6. 9 МПа. Под действием давления газов поршень перемещается от ВМТ до НМТ и совершает полезную работу, вращая через шатун 8 коленчатый вал 9. К концу рабочего хода давление газов становится 0,3-0,5 МПа, а температура — 700. 900°С. Такт выпуска (рис. 4, г) происходит при движении поршня от НМТ к ВМТ. Впускной клапан закрыт. Через открытый выпускной клапан 6 поршень выталкивает из цилиндра отработавшие газы. К концу такта выпуска давление газов в цилиндре уменьшается до 0,11.-0,12 МПа, а температура — до 500. 700 °С. После окончания такта выпуска при вращении коленчатого вала рабочий цикл двигателя повторяется в той же последовательности.

4. Порядок работы двигателя

Порядком работы двигателя называется последовательность чередования рабочих ходов по цилиндрам двигателя. Для равномерной и плавной работы двигателя рабочие ходы и другие одноименные такты должны чередоваться в определенной последовательности в его цилиндрах. При этом чередование должно происходить через равные углы поворота коленчатого вала двигателя, величина которых зависит от числа цилиндров двигателя. В четырехтактном двигателе рабочий процесс совершается за два оборота коленчатого вала, т.е. за поворот вала на 720°. Число рабочих ходов равно числу цилиндров двигателя. Их чередование для четырех-, шести- и восьмицилиндровых двигателей будет происходить соответственно через 180, 120 и 90° поворота коленчатого вала.

Порядок работы двигателя во многом зависит от типа двигателя и числа цилиндров. Так, например, у коленчатого вала рядного четырехцилиндрового двигателя, представленного на рис.5, а,

Рис. 5. Схема (а) и таблица (б) порядка работы четырехцилиндрового двигателя: 1, 2, 3, 4 — цилиндры двигателя

5. Внешняя скоростная характеристика двигателя

Внешней скоростной характеристикой двигателя называется зависимость эффективной мощности Ne и крутящего момента Ме от частоты вращения коленчатого вала при полной подаче топлива. Эффективной называется мощность, развиваемая на коленчатом валу двигателя. Внешняя скоростная характеристика определяет возможности двигателя и характеризует его работу. По внешней скоростной характеристике определяют техническое состояние двигателя. Она позволяет сравнивать различные типы двигателей и судить о совершенстве новых двигателей.

На внешней скоростной характеристике (рис.6) выделяют следующие точки, определяющие характерные режимы работы двигателя:

Nmax – максимальная (номинальная) мощность;

nN – частота вращения коленчатого вала при максимальной мощности;

М max – максимальный крутящий момент;

nM – частота вращения коленчатого вала при максимальном крутящем моменте;

nmin – минимальная частота вращения коленчатого вала, при которой двигатель работает устойчиво при полной подаче топлива;

nmax – максимальная частота вращения.

Из характеристики видно, что двигатель развивает максимальный момент при меньшей частоте вращения, чем максимальная мощность.

Это необходимо для автоматического приспосабливания двигателя к возрастающему сопротивлению движения. Например, автомобиль двигается по горизонтальной дороге при максимальной мощности двигателя и начинает преодолевать подъем. Сопротивление дороги возрастает, скорость автомобиля и частота вращения коленчатого вала уменьшаются, а крутящий момент увеличивается, обеспечивая возрастание тяговой силы на ведущих колесах автомобиля. Чем больше увеличение крутящего момента при уменьшении частоты вращения, тем выше приспосабливаемость двигателя и тем меньше вероятность его остановки. Для бензиновых двигателей увеличение (запас) крутящего момента достигает 30 %, а у дизелей — 15 %.

В эксплуатации большую часть времени двигатели работают в диапазоне частот вращения n M — n N , при которых развиваются соответственно максимальные крутящий момент и эффективная мощность. Внешнюю скоростную характеристику двигателя строят по данным результатов его испытаний на специальном стенде. При испытаниях с двигателя снимают часть элементов систем охлаждения, питания и др. (вентилятор, радиатор, глушитель и др.), без которых обеспечивается его работа на стенде. Полученные при испытаниях мощность и крутящий момент приводят к нормальным условиям, соответствующим давлению окружающего воздуха 1 атм и температуре 15 °С. Эти мощность и момент называются стендовыми, и они указываются в технических характеристиках, инструкциях, каталогах, проспектах и т.п. В действительности мощность и момент двигателя, установленного на автомобиле, на 5. 10 % меньше, чем стендовые. Это связано с установкой на двигатель элементов, которые были сняты при испытаниях (насос гидроусилителя, компрессор и др.). Кроме того, давление и температура при работе двигателя на автомобиле отличаются от нормальных.

При проектировании нового двигателя внешнюю скоростную характеристику получают расчетным способом, используя для этого специальные формулы. Однако действительную внешнюю скоростную характеристику получают только после изготовления и испытания двигателя.

Список использованной литературы

1. Сарбаев В.И. Техническое обслуживание и ремонт автомобилей. − Ростов н/Д: «Феникс», 2004.

2. Вахламов В.К. Техника автомобильного транспорта. − М.: «Академия», 2004.

3. Барашков И.В. Бригадная организация технического обслуживания и ремонта автомобилей. – М.: Транспорт, 1988г.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector