Впрыск топлива от оборотов двигателя
Особенности KX450F — 2011
Четырехтактный одноцилиндровый двигатель с впрыском топлива объемом 449 см3 с жидкостным охлаждением обладает богатой отдачей на низких и высоких оборотах. Равномерное распределение мощности и ручка газа с мгновенным откликом обеспечивают широкий диапазон крутящего момента, что позволяет гонщикам чувствовать подхват даже с самых низких оборотов двигателя. В дополнение к существующим преимуществам KX450F, впрыск топлива способствует мгновенному ускорению без задержек, особенно после приземлений после прыжка.
Cистема впрыска топлива, не зависящая от аккумулятора
Разработанная специально для мотокросса, система впрыска топлива включает в себя небольшой легкий блок управления и работает без аккумулятора во избежание излишнего веса. Впрыск топлива исключает необходимость регулировки настроек двигателя в соответствии с условиями трассы и климатическими условиями.
Облегченный топливный насос
Облегченный алюминиевый топливный насос с плоским днищем находится в пластиковом баке. В моделях 2011 года угол установки топливного насоса повернут на 55° с целью повышения надежности. Для обеспечения стабильной подачи топлива во время активных мотогонок, насос оснащен резиновым топливным фильтром, который действует как ловушка для топлива. Возвратный шланг от регулятора давления обеспечивает постоянное наличие топлива в фильтре.
Комплект настройки зажигания KX FI (приобретается дополнительно)
Калибровочный комплект KX FI такой же, как у заводских команд Kawasaki в Европе и США. Данный комплект позволяет водителям-экспертам регулировать характеристики двигателя (путем редактирования текущих настроек) с учетом их предпочтений, записывать данные о поездке и анализировать эти данные для дальнейшей более тонкой настройки.
Подвеска, настроенная для гонок
Вилка Kayaba AOS (Air-Oil-Separate) имеет две независимых камеры (воздух и масло) для обеспечения стабильных характеристик демпфирования на длинных заездах. Уплотнения вилки с низким коэффициентом трения способствуют плавной работе. Облегченные внутренние компоненты вилки экономят 50 г веса каждый (в общем 100 г). Обновленные настройки демпфирования вилки дополняют изменения в раме и передней оси, обеспечивая улучшенную работу и улучшенные характеристики амортизации. Сверхпрочное покрытие DLC (Diamond-Like Carbon) на наружной поверхности внутренних трубок вилки уменьшает трение скольжения (и статическое трение) и обеспечивает улучшенную работу, способствуя более мягкой езде. Покрытие эффективно даже если вилка подвергается поперечным воздействиям, которые обычно затрудняют скольжение, например, при поворотах. Усиленная жесткость поверхности также минимизирует появление царапин и повреждений трубок.
Задний амортизатор
Обновленные настройки демпфирования заднего амортизатора дополняют изменения в раме и передней оси, обеспечивая улучшенную работу и улучшенные характеристики амортизации. Задний амортизатор характеризуется возможностью раздельной настройки амортизации сжатия для высоких и низких скоростей. Амортизатор также имеет покрытие Kashima на рабочем цилиндре. Уменьшенное трение смягчает работу подвески.
Технические характеристики Cadillac XT6
Динамические характеристики | XT6 |
Максимальная скорость, км/ч | 210 |
Разгон 0 — 100 км/ч, сек | 9.9 |
Расход топлива, л/100 км (городской) | 11.2 |
Расход топлива, л/100 км (трасса) | 7.8 |
Расход топлива, л/100 км (смешанный) | 9.1 |
Экологический класс | Евро 5 |
Двигатель | XT6 |
Двигатель | бензиновый, 2.0T, LSY |
Расположение, материал | спереди, продольное, блок цилиндров — алюминиевый сплав; поддон картера — композитный |
Количество, расположение цилиндров | 4, рядное |
Механизм газораспределения | DOHC, с изменяемыми фазами газораспределения VVT, регулируемой высотой подъема клапанов и системой ActiveFuelManagement |
Диаметр (мм) | 83.0 |
Ход поршня (мм) | 92.3 |
Рабочий объем (куб. см) | 1998 |
Степень сжатия | 10.0:1 |
Требования к типу топлива | неэтилированный бензин с октановым числом не менее 95 |
Подача топлива | прямой впрыск |
Максимальная мощность (кВт) | 147 |
Максимальная мощность (л.с.) | 200 |
Максимальная мощность (при об/мин) | 4250 |
Максимальный крутящий момент (Нм) | 350 |
Максимальный крутящий момент (при об/мин) | 1500 |
Максимальные обороты двигателя (об/мин) | 6600 |
Ёмкость картера двигателя (л) | 5.0 |
Ёмкость системы охлаждения (л) | 9.4 |
Трансмиссия | XT6 |
Тип трансмиссии | с электронным управлением, 9-ступенчатая с подрулевыми лепестками для ручного переключения передач |
Количество передач | 9 |
I | 4.689 |
II | 3.306 |
III | 3.012 |
IV | 2.446 |
V | 1.923 |
VI | 1.446 |
VII | 1.000 |
VIII | 0.747 |
Задний ход | 2.960 |
Передаточное число главной передачи | 3.470 |
Шасси | XT6 |
Привод | Полный |
Радиус разворота (м) | 11.9 |
Ход рулевой колонки (обороты) | 2.90 |
Тормоза | XT6 |
Тормозная система передняя, диаметр (мм) | 13.6 |
Тормозная система задняя, диаметр (мм) | 12.4 |
Системы активной безопасности | StabiliTrak с четырехканальным АБС, системой курсовой устойчивости, противобуксовочной системой и регулировкой крутящего момента |
Публикуемые параметры указаны без учета дополнительного оборудования и аксессуаров. Дополнительные аксессуары или обрудование, заказываемые по запросу пользователя, могут незначительно изменять данные параметры и габариты.
Вся представленная на сайте информация, касающаяся стоимости автомобилей и сервисного обслуживания носит информационный характер и не является публичной офертой, определяемой положениями ст. 437 (2) ГК РФ. Для получения подробной информации обращайтесь к менеджерам “Автоцентр Сити”. Опубликованная на данном сайте информация может быть изменена в любое время без предварительного уведомления.
Новый дизельный двигатель Volvo: мощный и экологичный
Благодаря передовым решениям, таким, как система двух последовательных турбо нагнетателей, керамических свечей подогрева и пьезоэлектрических инжекторов топлива, инженерам Volvo удалось снизить расход топлива до рекордно низких параметров — всего 6.2 л/100 км. Выброс CO2 составляет 164 г/км.
Столь низкий расход топлива в сочетании с мощностью в 205 л. с. и крутящим моментом 420 НМ означает, что Volvo S80 с новым двигателем D5 претендует на звание лучшего автомобиля в своем классе.
«Перед нами стояла задача: создать современный дизельный двигатель, отвечающий требованиям стандарта Евро 5, — рассказывает Дерек Краб (Derek Crabb), вице-президент по двигателям и трансмиссии. — Двигатели предыдущего поколения неоднократно совершенствовались и, наконец, полностью реализовали свой потенциал. Мы решили начать все с чистого листа и использовать самые передовые технологии. В результате мы создали двигатель, который превысил наши ожидания. Более того, этот двигатель разрабатывался исключительно специалистами Volvo».
Рабочие параметры и ездовые качества высшего класса
Объем нового двигателя Volvo D5 составляет 2.4 литра. Двигатель демонстрирует мгновенный отклик на педаль акселератора, отличные динамические показатели и ровную работу в любых условиях движения, включая езду в городе. Наиболее актуальны преимущества двигателя с автоматической трансмиссией: высокий крутящий момент доступен в широком диапазоне оборотов, а в сочетании с автоматической трансмиссией, обеспечивающей мгновенное переключение скоростей, двигатель гарантирует уверенную езду и низкий расход топлива.
Чтобы обеспечить высокую мощность и динамичные характеристики, было решено использовать систему двух турбо нагнетателей разного объема, при чем турбо нагнетатели включаются в работу последовательно, обеспечивая уверенный крутящий момент в широком диапазоне оборотов. В результате двигатель немедленно реагирует и позволяет задавать уверенные ускорения на любой скорости, а включение турбо нагнетателей происходит настолько ровно, что водитель этого даже не замечает. Обгон благодаря такому двигателю можно осуществлять на любой скорости, и особенно мощные ускорения на скорости км/ч. Ровная работа трансмиссии способствует уверенной езде.
Передовая технология впрыска топлива с использованием пьезоэлектрических топливных инжекторов обеспечивает точное распределение топливной смеси в камере сгорания, при этом топливо распыляется до атомной структуры, а процесс сгорания становится более эффективным с малым выбросом выхлопных газов. В тоже время, новая технология и эффективная процедура сжигания топлива преобразили звук двигателя, который более напоминает характерный звук шестицилиндрового бензинового двигателя. Новый двигатель демонстрирует превосходные характеристики звукоизоляции и восприятия звука в автомобиле.
Расход топлива: результат превзошел ожидания
«Когда мы работали над проектом, мы стремились добиться снижения расхода топлива до 6.4 литра на 100 км. Это хорошие показатели для такого большого автомобиля, как Volvo S80, — вспоминает Дерек Краб. — В ходе разработки двигателя мы поняли, что сможем выйти на более низкие показатели, и сегодня наш двигатель расходует 6.2 л/100 км. Для двигателя с автоматической трансмиссией мы смогли снизить расход топлива более чем на 8 процентов — с 7.3 до 6.7. Это значительный успех».
Столь низкий расход топлива объясняется использованием передовых технологий, в том числе двух последовательных турбо нагнетателей, которые позволяют снизить расход топлива в широком диапазоне оборотов и при различных уровнях крутящего момента.
Технология двух турбо нагнетателей также сделала возможным обеспечить более высокий уровень рециркуляции отработавших газов в более широком диапазоне оборотов двигателя. Такая компоновка турбо нагнетателей позволила оптимально использовать возможности технологии турбо наддува, повысить мощность двигателя и снизить расход топлива.
Система впрыска топлива с пьезоэлектрическими топливными инжекторами и мощным топливным насосом также способствует экономии топлива за счет четкого и быстрого регулирования подачи топлива под высоким давлением, обеспечивая более эффективное сжигание топливной смеси.
Низкий выброс отработавших газов и четкая вентиляция двигателя
«Технические решения, которые позволили обеспечить низкий расход топлива, также делают двигатель более чистым с экологической точки зрения, — поясняет Дерек Краб. — Когда мы разрабатывали новый двигатель, перед нами стояли задачи снизить объем выброса отработавших газов и частиц сажи».
Помимо системы сдвоенных турбо нагнетателей, пьезоэлектрических топливных инжекторов и усовершенствованной системы рециркуляции отработавших газов в новом двигателе D5 используются керамические свечи подогрева — это высокотехнологичное решение, благодаря которому двигатель демонстрирует превосходные характеристики на стадии пуска за счет быстрого прогрева. Всего за две секунды свечи достигают температуры 1000 градусов по Цельсию, обеспечивая легкий пуск двигателя и снижая уровень выброса вредных выхлопов. Свечи подогрева используются в определенных условиях эксплуатации двигателя, например, на низких оборотах свечи подогрева повышают температуру в цилиндрах, за счет чего повышается эффективность сжигания топлива.
Передовая технология впрыска топлива обеспечивает дополнительную подачу топлива в малых дозах (процесс, получивший название «вторичный впрыск»), что позволяет удалить в отработавших газах частицы сажи
Чтобы снизить выброс частиц в отработавших газах, двигатель должен «дышать»: необходимо обеспечить надежную вентиляцию камер сгорания. Инженеры Volvo справились и с этой задачей, предусмотрев оптимальную систему контроля за подачей воздуха в цилиндры двигателя.
«Мы обеспечили превосходную вентиляцию двигателя и низкий выброс частиц в отработавших газах. Нам удалось сократить общий выброс газов, и мы можем наделить новый Volvo S80 D5 двумя выхлопными трубами», — подчеркивает Дерек Краб.
Три года — с начала реализации проекта и до его завершения
Новый пятицилиндровый дизельный двигатель — это первый двигатель, созданный новым подразделением Volvo по разработке двигателей.
«С момента описания технического задания до установки первого двигателя на автомобиль ушло менее трех лет — это очень хороший результат, — считает Дерек Краб. — Мы будем постоянно совершенствовать этот двигатель, создавая необходимые модификации для других моделей Volvo».
Задача заключалась в создании дизельного двигателя, который смог бы удовлетворить высокие требования покупателей модели Volvo S80. Кроме этого, двигатель должен был соответствовать строгим стандартам по защите окружающей среды, которые будут приняты в скором времени.
В основе двигателя лежит модульная конструкция, причем такой подход использовался как в процессе проектирования, так и построения двигателя. Например, в этом двигателе используются стандартизированные крепления турбо нагнетателей и других компонентов. Такая конструкция облегчит установку двигателя на других моделях Volvo и позволит совершенствовать этот двигатель, обеспечивая соответствие будущим требованиям.
«Модульная конструкция облегчает сборку двигателя, — поясняет Дерек Краб. — Мы стремились добиться лучшей компоновки для крепления двигателя и качества сборки. Поэтому, когда мы разрабатывали технические условия для сборки двигателя, мы прислушивались к мнению каждого опытного инженера и служащего цеха по сборке двигателей на нашем предприятии».
Краткое техническое описание
Двигатель D5 полностью выполнен из алюминия. Это обеспечивает малый вес двигателя и хороший отвод тепла.
Поперечное охлаждение обеспечивает равномерное охлаждение головки цилиндров и блока двигателя. В результате поддерживается ровная температура двигателя, что в свою очередь повышает надежность и срок службы двигателя.
Два турбо нагнетателя разных размеров создают высокое давление наддува — 1.8 бар. Турбо наддув предусмотрен в широком диапазоне оборотов двигателя. Турбо нагнетатель меньших размеров действует в основном на малых оборотах. Он быстрее реагирует, чем большой турбо нагнетатель, и обеспечивает моментальный отклик на команды акселератора. На высоких оборотах в дело вступает большой турбо нагнетатель, который повышает тягу двигателя, необходимую для ускорения на высоких скоростях. Турбо нагнетатели не только способствуют повышению мощности и снижению расхода топлива, но делают возможным более эффективно использовать систему рециркуляции отработавших газов.
Увеличение размеров охладителя рециркуляции отработавших газов и внедрение более эффективной конструкции лопастей охладителя позволило улучшить параметры отвода тепла на 25 процентов. Температура отработавших газов значительно понижается, что способствует снижению содержания окислов азота (NOX) до уровня, требуемого согласно стандарту Евро 5. Из окислов азота формируется озоновый слой вблизи от поверхности земли, который приводит к чрезмерному окислению почвы и воды. NOX также негативно воздействует на дыхательную систему.
Пьезоэлектрические топливные инжекторы используются в сочетании с высоко эффективным топливным насосом высокого давления, который обеспечивает мощное давление впрыска — 1800 бар.
Пьезоэлектрические инжекторы работают в два раза быстрее по сравнению с обычными топливными инжекторами. В результате обеспечивается более точный контроль количества впрыскиваемого в цилиндры топлива, что в свою очередь позволяет добиться более эффективного сжигания топлива, низкого расхода топлива и снижения выброса вредных веществ.
Благодаря высокой скорости пьезоэлектрический инжектор способен регулировать до семи уровней впрыска топлива за каждый операционный цикл. Высокая скорость и давление впрыска позволяют инжекторам осуществлять предварительный впрыск топлива, даже когда обороты двигателя превышают 3000 об/мин — этим объясняется удивительно тихая работа нового двигателя.
Пьезоэлектрические инжекторы также обеспечивают короткий впрыск топлива после основной подачи топлива в цилиндры. В результате сажевый фильтр очищается от частиц сажи даже на малых оборотах двигателя.
В конструкции двигателя D5 используется технология Common Rail — топливная магистраль из нержавеющей стали рассчитана на крайне высокое давление. В топливной системе может поддерживаться давление до 1800 бар.
Топливный насос высокого давления — в отличие от предыдущего поколения двигателей D5 в новом дизельном двигателе используются топливный насос из двух, а не трех компонентов. Это облегчает работу насоса, снижая нагрузку на разные элементы насоса. Насос с облегченным приводом также снижает расход топлива.
Керамические свечи подогрева — это высокотехнологичные устройства, обеспечивающие превосходный пуск двигателя. Свечи мгновенно нагреваются. Уже через две секунды температура нагрева достигает 1000 градусов по Цельсию. Максимальная рабочая температура составляет 1300 градусов — это примерно на 30 процентов выше по сравнению с обычными свечами подогрева. Благодаря керамическим свечам подогрева пуск двигателя осуществляется моментально без предварительного прогрева даже при температурах минус 30 градусов.
В новом двигателе не используется масляный щуп. На информационный дисплей выводится предупреждение о необходимости добавить масло в систему двигателя. Более того, система подсказывает точное количество масла, которое необходимо залить.
В новом двигателе предложены новые опоры двигателя — это позволило обеспечить надежное крепление двигателя, учитывая высокую мощность и крутящий момент. В конструкции двигателя предусмотрена третья реактивная штанга для снижения вибрации при резком повышении оборотов двигателя.
Характеристики двигателя, новый D5, стандарт Евро 5 (Volvo S80)
цилиндров | 5 |
Объем, куб. с./куб. дюймы | 2400/146.5 |
Диаметр цилиндра, мм/дюймы | 81.0/3.19 |
Ход поршня, мм/дюймы | 93.15/3.667 |
клапанов | 20 |
Распределительный вал | Двойной верхний распределительный вал |
Степень сжатия | 16.5:1 |
Холостые обороты | 700 |
Макс обороты | 5000 |
Макс мощность (кВ/об/с) | 151/67 |
Макс мощность (л. с./об/мин) | 205/4000 |
Макс кр. момент (НМ/об/с) | 420/ |
Система управления двигателем | Электронное управление, система прямого впрыска с технологией «Common Rail» |
Давление впрыска, бар | 1800 |
Давление турбо нагнетателя, кПа | 180 |
Сажевый фильтр | Самоочищающийся |
«В заключение можно добавить, что новый высокотехнологичный пятицилиндровый дизельный двигатель Volvo — это еще один шаг на пути снижения негативного воздействия на окружающую среду. Обладатели Volvo S80 с таким двигателем оценят тихую и ровную работу двигателя и превосходные ездовые качества автомобиля», — добавил Дерек Краб.
Системы впрыска топлива бензиновых двигателей
Рассмотрим, как устроены системы впрыска бензиновых двигателей, как они работают, каковы их виды, в чём особенности центрального, коллекторного и непосредственного впрыска.
Системы впрыска топлива бензиновых двигателей – это системы для дозированной подачи бензина в ДВС. Тип устройства, характеристика системы влияет на ряд важных показателей. Это экологический класс двигателя, его мощность, топливная эффективность.
Устройство системы впрыска бензинового двигателя может иметь различные конструктивные решения и модификации. О них мы расскажем, останавливаясь на конкретных видах систем впрыска.
Варианты топливных систем бензиновых двигателей
Впрыск топлива в воздушный поток может происходить как за счёт разрежения, так и за счёт избыточного давления. Например, в карбюраторе впрыскивание происходит за счёт разрежения, а в большинстве современных систем — за счёт избыточного давления.
- центральным (например, наддроссельный впрыск),
- распределённый или коллекторный (осуществляется отдельной форсункой в предкамеру, расположенную перед впускным клапаном каждого цилиндра двигателя),
- непосредственный (осуществляется напрямую в камеры сгорания, отдельными форсунками), встречается в разных вариациях, характерен для современных автомобилей..
Варианты топливных систем бензиновых двигателей (R R. Bosch)
Конструктивное решение с карбюраторами
Дольше всего человечество знакомо с подачей топлива посредством карбюратора. И не потому, что такие решения лучшие, а потому что они – первые. И через множество лет это были единственно доступные системы. Карбюратор был неотъемлемой частью топливной системы на протяжении сотни лет. Нельзя сказать, что сейчас карбюраторы полностью исчезли из жизни, но на легковой и коммерческий транспорт карбюраторы ставить перестали. Их можно увидеть только на средствах малой механизации, которые применяются для садовых, строительных работ.
Автопром же перестал выпускать машины с карбюраторной системой еще в 90-е годы прошлого века.
Принцип их действия основан на всасывании топлива в поток воздуха, проходящего через сужение карбюратора. увеличение скорости движения воздуха в месте сужения воздушного канала формирует разрежение воздуха.
Объём воздуха, который проходит через сужение воздушного канала, пропорционален объёму топлива, поступающего через распылитель карбюратора. Благодаря этому несложно в автоматическом режиме поддерживать требуемое отношение топлива к воздуху.
.
Как работает устройство?
- Топливо из бака выбирает насос (управляемый механически или электрически – в зависимости от модели).
- ДВС запускается, и поток воздуха, проходящий через сужение воздушного канала карбюратора, создает разрежение.
- В смесительную камеру карбюратора поступает топливо.
- Жиклер (калиброванное отверстие) дозирует топливо.
С точки зрения работы всё достаточно просто. Так почему же карбюраторы уходят в историю?
Здесь достаточно много причин:
- Низкая экономичность, а соответственно, и низкий уровень топливной эффективности.
- Проблемы при переменных режимах работы, снижающие динамические качества- автомобиля.
- Прямая зависимость от расположения двигателя в автомобиле.
- Выброс в окружающую среду большого количества вредных веществ (несоответствие нормативам эмиссии газообразных вредных выбросов в атмосферу).
Моновпрыск
На смену карбюратору пришла система так называемого «над дроссельного впрыска» топлива. Она также известна как моновпрыск или система центрального впрыска.
Принцип базируется на впрыске топлива одной форсункой, установленной на впускном коллекторе двигателя.
Самыми популярными конструкциями системы центрального впрыска являются решения Mono-Jetronic от R. R. Bosch и Opel-Multec (как нетрудно догадаться из названия, это решение корпорации Opel).
Появление моновпрыска приходится на середину 70-х годов 20-го века. В то время системой Mono-Jetronic стали оснащать автомобили Volkswagen и Audi.
Главной задачей при разработке моновпрыска стало нахождение альтернативы карбюраторной системе впрыска. Важно было найти более эффективную систему топливоподачи, которая смогла бы удовлетворить возросшим экологическим требованиям.
Mono-Jetronic: конструктивные элементы
- Регулятор давления. Способен поддержать на стабильном уровне рабочее давление в системе впрыска, а после выключения ДВС сохранить остаточное давление в системе . Это важно для облегчения пуска, создание барьеров против образования паровых пробок.
- Электромагнитный клапан (форсунка). Обеспечивает импульсный впрыск топлива. Управление клапаном осуществляется посредством электросигнала. Он идёт от блока управления.
- Дроссельная заслонка. Регулятор объема поступающего воздуха.
- Привод. Он ответственный за работу дроссельной заслонки.
- Электронный блок управления. «Мозг», синхронизатор.
Входные датчики (момента впрыска, положения дроссельной заслонки, оборотов двигателя, концентрации кислорода и т.д.).
Распределённый впрыск
В 70-е годы появились и системы распределительного впрыска, основанные на подаче топлива отдельной форсункой в предкамеру, расположенную перед впускным клапаном каждого цилиндра двигателя. Впрыск может быть при этом может быть как импульсным, так и непрерывным.
Мы остановимся на решении K-Jetronic производителя Robert R. Bosch с непрерывным впрыском. K-Jetroniс активно присутствовала на рынке с 1973-го по 1995 годы. Сначала K-Jetroniс выпускалась с механической системой дозирования. С 1982 года — с электронной начинкой и электронным управлением дозирования. Начиная с версий (модификаций) с электронным управлением система стала называться KE-Jetroniс.
Экономические характеристики автомобилей, их уровень топливной эффективности был существенно улучшен, уровень выбросов вредных веществ в выхлопе также снизился.
В системах K/KE-Jetronic впрыск топлива осуществлялся непрерывно в смесительную камеру перед впускным клапаном. При этом количественное дозирование топлива, поступающего в поток воздуха, производилось за счет взаимосвязанных узлов «расходомер – дозатор».
Помимо дозатора-распределителя обязательный элемент решения – дроссельная заслонка, расположенная за дозатором, у первых версий были вакуумно-механические клапаны коррекции топлива(запуск клапанов в работу возможен как от терморегуляторов, так от разряжения воздуха во впускном коллекторе), в поздних модификациях появились электрические клапаны коррекции топлива. Кроме того, системы стали оснащать кислородным датчиком (лямбда-зондом). Огромным плюсом схемотехнического решения стало то, что система впрыска могла быть оснащена катализаторам-, но к уровню надёжности были существенные вопросы.
Дискретный впрыск топлива
Новой эрой стал дискретный впрыск топлива. Первой здесь стала электронная система распределенного впрыска топлива L-Jetronic – опять-таки от R. R. Bosch. С появлением этого решения стало возможным говорить о качественной управляемости, безотказности, надёжности. Да, сразу же стало ясно, что это средний и высокий ценовой сегмент. Поэтому долгое время системы дискретного впрыска топлива сосуществовали с системами непрерывного распределительного впрыска типа K/KE-Jetronic.
Но постепенно L-Jetronic обрела массовость. Её стал активно использовать практически весь европейский автопром. Явные плюсы оценили и водители, и персонал автосервиса: повысилась топливная экономичность авто. Для обслуживания перестали быть нужны сложные навыки (в первую очередь, это стало возможным за счёт того, что отпала надобность выполнять механические настройки).
L-Jetronic несколько раз модернизировалась и уверенно держалась на рынке до появления стандарта Евро-3. После чего более актуальными стали решения на основе термоанемометрических датчиков массметра (массового расхода воздуха). В частности, популярность приобрела модификация LH-Jetronic .
У новой разработки стала доступна индивидуальная регулировка подачи топлива в каждый из цилиндров
Объединяющая черта систем Mono-Jetronic, L-Jetronic, LH-Jetronic состоит в том, это все эти решения управляют только впрыском топлива, при этом для воспламенения топлива задействована система зажигания с модулем электронного управления.
Устройства, в которых система и зажигания и впрыск были синхронизированы и объединены, корпорация R.R. Bosch начала выпускать с 1979 года.
Ярким примером решения с объединёнными системами впрыска и зажигания – стала система Motronic от R.R. Bosch.
Она существовала в нескольких модификациях, появившихся в 90-е годы 20-го века. В эти годы в их конструкции входили механические расходомеры воздуха. Но вскоре вместо них стали использоваться термоанемометрические датчики-расходомеры, расширились возможности для самодиагностики.
Правда, полностью удовлетворить запросам диагноста системы не могли, поскольку протокол выявления неисправностей не обладал высокой результативностью. В последующих модификациях эта проблема была успешно решена.
Но самым революционным решением Motronic стало появление датчика абсолютного давления во впускном коллекторе (MAP-sensor).
Использование MAP-сенсора в системе управления двигателем позволило готовить качественную топливовоздушную смесь, состав которой близок к желаемому, и, главное, не сложно соблюсти европейские требования к выхлопам автомобилей.
Но для выхода на американский рынок даже этого было недостаточно. По стандартам США в топливной системе должна быть обязательная система контроля утечек паров топлива из бака. Так появилось инновационное решение Motronic M5. С ним появились все условия для того, чтобы исключить эксплуатацию автомобиля с потерявшей герметичность пробкой заливной горловины или неисправной системой вентиляции топливного бака.
Кроме того, эта система соответствует требованиям самого строгого протокола самодиагностики OBD-II/CARB.
А благодаря электроуправлению дроссельной заслонкой отлажено взаимодействие между системой управления двигателем и системой торможения.
Системы непосредственного впрыска
Особое место среди систем впрыска бензиновых двигателей получили системы непосредственного впрыска.
Их принцип действия основан на том, что топливо посредством инжектора распыляется прямо в цилиндр двигателя.
- Это важно для достижения топливной экономичности.
- Плунжерный насос. Подаёт топливо в рампу, соединённую с форсунками.
- Регулятор давления топлива. Поддерживает стабильное рабочее давление в топливной рампе. Топливная рампа. Здесь непосредственно происходит процесс распределения топлива по форсункам.
- Предохранительный клапан на рампе. Защищает рампу от предельных давлений.
- Датчик высокого давления. Замеряет давление в рампе, подаёт сигнал блоку управлением двигателя на коррекцию давления.
Согласование взаимодействия узлов осуществляется посредством электронной системы управления двигателем. От блока электронного управления поступают команды на исполнительные механизмы.
Интересная деталь! Если среди дизельных систем впрыска такие топливные системы были популярны давно, то среди бензиновых распространение получили не сразу. Причина элементарно проста: бензин в отличие от дизельного топлива является плохой смазкой, что вызывало быстрый износ» топливного насоса.
Но с развитием технологий уплотнений разработчики снова смогли заняться бензиновыми системами с прямым впрыском топлива. Система непосредственного впрыска может обеспечивать несколько видов смесеобразования: послойное, однородное (гомогенное), и стехиометрическое. Послойное смесеообразование актуально при малых и средних оборотах, стехиометрическое и гомогенное – при сверхвысоких оборотах, а также при средних и высоких нагрузках.
Самые популярные решения – с послойным смесеобразованием. Их хорошо знают по названию FSI и TFSI (у Volkswagen и у Ауди). Буква “T” в названии свидетельствуют о наличии турбокомпрессора, то есть двигатель, как именуется в просторечии — “турбирован”.
В цилиндр таких бензиновых систем впрыска поступает небольшое количество топлива. Тщательная организация потока воздуха в цилиндре (его траектория движения, подобная «кувырку) и удачно подобранное время впрыска топлива в цилиндр создают все условия, чтобы это небольшое количество топлива было подано к электродам свечи зажигания, и произошло воспламенение этой порции горючей смеси.
Почему на эту бензиновую систему впрыска не переходят повсеместно. К сожалению, актуальна такая проблема, как «турбоямы» при резком нажатии на педаль газа.
Этот недостаток полностью устранен при наличии наддувочного агрегата с электроприводом. Такие системы недёшевы. Но оперативно выйти на режим максимальной мощности, избежать «турбоям» при резком нажатии педали на газ с ними – не проблема. Прямой впрыск SC-E актуален, например, для ряда спортивных автомобилей.
Очень высокий интерес – и к битопливным (бинарным) система с газотурбинным наддувом. При работе на бензине можно достичь очень хорошего крутящего момента.
Параметры применяемого топлива прописываются в постоянной памяти. Если нужно заменить бензин на альтернативное топливо, изменяется программа смесеобразования. Это очень удобно.
Какой впрыск лучше?
Очень часто спорят: какой впрыск лучше. Дешевле всего обойдутся решения, ориентированные на распределённый впрыск. Подкупает и то, что они не требовательны к качеству топлива.
Если вам важно, чтобы была высокая топливная эффективность при минимальных значениях вредных выбросов, однозначно стоит выбирать непосредственный впрыск. Да, эти решения дороже. Но лучше заплатить больше единожды, чем постоянно “съедать” лишнее топливо.
Кстати, дороговизна решения связана, главным образом, с тем, что производителям пришлось внести кардинальные изменения в конструкцию головок цилиндров, однако в ремонте эти двигатели значительно дороже простых и надёжных двигателей с распределённым предкамерным впрыском топлива.
Не просто изучить топливные системы, а попрактиковаться работать в поиске различных неисправностей в них вам поможет специализированный тренажёр на платформе ELECTUDE. Отличное подспорье для автомобильных механиков и диагностов.