Arskama.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Время одного оборота двигателя

Технические характеристики и функции

Содержание:

  1. 1. Основные характеристики
  2. 2. Функции

Ведутся исследования и внедряются все новые разработки призванные максимально оптимизировать использование дрели в любых жизненных ситуациях. Современная дрель может похвастаться электронной начинкой и деталями из инновационных полимерных материалов, но наряду с этим остаются актуальными и первоначальные технические характеристики, описывающие в свое время работу самых первых дрелей.

Основные характеристики

Мощность — показатель силы электромотора, одного из основных компонентов дрели. Чем она больше, тем больше скорость вращения и крутящий момент — и тем быстрее качественнее и эффективнее будет работать устройство. Мощность измеряется в ваттах (Вт). Современные производители выпускают серии разных видов дрелей от бытовых «малюток» с мощностью 250 Вт до профессиональных сверлильных «монстров» с мощностью 2500 Вт.

Скорость вращения – характеризует количество оборотов сделанных шпинделем вокруг собственной оси за единицу времени. Измеряется скорость в оборотах в минуту (об/мин). Чем выше скорость вращения дрели, тем больше ее производительность. Среди дрелей встречаются модели со скоростью вращения до 4600 об/мин и выше.

Крутящий момент — является показателем того, с каким усилием может вращаться шпиндель дрели, преодолевая сопротивление. Крутящий момент измеряется в Ньютонах на метр (Н/м). Этот показатель важен, когда необходимо на низкой скорости преодолевать большое сопротивление, например в дрелях-шуруповертах или дрелях-миксерах.

В технике с односкоростным редуктором при повешении скорости вращения увеличивается и крутящий момент. Поэтому односкоростной дрелью-шуруповертом закрутить тугой шуруп будет возможно только на высокой скорости, а это чревато перетягиванием или повреждением крепежа. В моделях с двумя и более скоростными редукторами высокие обороты снижают величину крутящего момента. Поэтому работая на низких скоростях, вы сможем аккуратно справляться с самым строптивым крепежом. Такие многоскоростные редукторы широко используются в дрелях-шуруповертах, позволяя им с одинаковым успехом сверлить и работать с крепежной оснасткой.

Максимальный диаметр сверления – указывает предельно допустимый размер отверстий, который вы можете выполнить с помощью этой дрели в том или ином материале. Обратите внимание, что для разных материалов максимальный диаметр сверления отличается. Величина максимального диаметра напрямую зависит от мощности вашей дрели: чем больше мощность, тем больше допустимый диаметр сверления. Превышение этого показателя ведет к перегрузке инструмента и его преждевременному износу и поломке.

Все выше перечисленные характеристики универсальны для всех классов и видов дрелей, далее же мы расскажем о функциях и опциях, которые и делают из современных дрелей настоящие произведения технического искусства.

Функции

Плавный пуск – контролируется электронной системой, обеспечивающей медленное начало вращения шпинделя с патроном для предотвращения резкого рывкового засверливания и перегрузки сети. Чаще присутствует на моделях большой мощности.

Обеспечение постоянной скорости вращения — постоянство вращения при изменении плотности засверливаемого материала или варьировании давления на саму дрель предотвращает риск заклинивания сверла и обеспечивает постоянный рабочий ритм.

Предотвращение перегрузок и перегрева – обусловлено работой электронной системы, обеспечивающей контроль за температурой на обмотках двигателя и предотвращающей его перегрузку и перегрев. Чаще всего дрели оборудуются световым индикатором, сигнализирующим об угрозе возникновения аварийной ситуации. При нарастании возможности перегрева система отвечает автоматической блокировкой инструмента.

Реверс – дает возможность вращать патрон по ходу и против хода часовой стрелки. Это незаменимо для вывинчивания крепежной оснастки и извлечения подклинившего сверла.

Сверление с ударом – позволяет сверлить с вращательно-поступательными движениями шпинделя. Поступательное движение возникает за счет соскальзывания зубьев подвижной патронной шестеренки и неподвижной редукторной шестеренки. Интенсивность работы системы измеряется частотой ударов в минуту (уд/мин). Средняя частота в ударных дрелях 50000 уд/мин, вариации зависят от класса инструмента. Такая функция может присутствовать у аккумуляторных дрелей-шуруповертов делая их универсальным инструментом.

Индикация износа щеток – оповещает световым индикатором о высоком уровне износа щеток двигателя. На некоторых моделях данная система автоматически блокирует работу дрели при достижении критического уровня износа. Следует отметить, что в настоящее время появляются электромоторы без щеток для дрелей.

Импульсный режим вращения – предназначен для кратковременного рывкового вращения патрона. Это применяется для дрелей-шуруповертов. Такой тип вращения шпинделя с патроном позволяет работать со старым, проржавевшим крепежным материалом, снижая риск «слизывания» шлиц и срыва головок крепежа.

Регулировка частоты вращения – электронная система, позволяющая регулировать скорость вращения шпинделя дрели силой нажатия на кнопку выключателя. Чем сильнее нажатие на кнопку, тем выше частота вращения.

Фиксация уровня частоты вращения – позволяет зафиксировать на одном уровне частоту вращения. Это дает возможность менять хват пользователю, не снижая оборотов и поддерживать постоянную интенсивность работы. Так же это удобно при работе с дрелью, закрепленной на стенде или стойке.

Тормоз выбега – препятствует длительному инерционному движению электродвигателя.

Автоматическая блокировка шпинделя – срабатывает после завершения движения шпинделя. Такая блокировка позволяет быстрее и легче проводить смену сверл, бит и насадок.

Существует ряд дополнительных опций для современных дрелей, обеспечивающих дополнительную комфортность и безопасность использования.

Крепление для ремневой фиксации – наличие такого делает возможным фиксацию дрели к ремню для переноски на поясе. Это исключает необходимость постоянной упаковки дрели в транспортировочный кейс и снижает затраты времени на подготовку к сверлению.

Быстросъемный патрон – незаменим при необходимости быстрой установки биты в шпиндель. Это довольно редкая опция позволяющая снизить общий вес дрели и быстро заменять насадки. Таким устройством снабжаются некоторые аккумуляторные дрели-шуруповерты.

Определяясь с выбором модели, не стремитесь найти в одном инструменте все вышеперечисленные функции, ведь для каждого типа их набор будет варьироваться. Именно различное соотношения мощности, функциональности и цены делают каждую модель индивидуальной. Менеджеры помогут вам разобраться в широком ассортименте дрелей представленных в нашем магазине.

Часто задаваемые вопросы по шаговым двигателям (FAQ)

Вопрос: Что такое шаговый двигатель и для чего он?

Ответ: Шаговые двигатели — это устройства, задача которых преобразование электрических импульсов в поворот вала двигателя на определенный угол. В отличие от обычных двигателей, шаговые двигатели имеют особенности, которые определяют их свойства при использовании в специализированных областях: управляя шаговым двигателем с помощью специального устройства (драйвер шагового двигателя), можно поворачивать его вал на строго заданный угол. Это позволяет применять его там, где требуется высокая точность перемещений. Наглядные примеры это принтеры, факсы, копировальные машины, станки с ЧПУ (Числовое программное управление), фрезерные, гравировальные машины, модули линейного перемещения, плоттеры, установщики радиоэлектронных компонентов. Шаговый двигатель является бесколлекторным двигателем постоянного тока. Как и другие бесколлекторные двигатели, шаговый двигатель высоконадежен и при надлежащей эксплуатации имеет длительный срок службы. Далее: подробно о строении шагового двигателя

Вопрос: Какие достоинства у шаговых двигателей?

Ответ: Достоинства истекают из особенностей конструкции: — Шаговый двигатель может обеспечить очень точное перемещение на заданный угол, причем без обратной связи — поворот ротора зависит от числа поданных импульсов на устройство управления; — высокая точность позиционирования и повторяемость, так качественные шаговые двигатели имеют точность не хуже 5% от величины шага, при этом данная ошибка не накапливается; — хорошая надежность двигателя, обусловленная отсутствием щеток, при этом срок службы двигателя ограничивается лишь ресурсом подшипников; — обеспечивает получение сверхнизких скоростей вращения вала без использования редуктора; — работа в широком диапазоне скоростей, т.к. скорость напрямую зависит от количества входных импульсов. Недостатки — шаговый двигатель подвержен резонансу; — может пропустить шаги и реальная позиция вала окажется рассинхронизирована с позицией, заданной в управляющей системе — низкая удельная мощность шагового привода; — потребляемая энергия не уменьшается при отсутствии нагрузки; — малый момент на высоких скоростях;

Вопрос: Какие бывают шаговые двигатели?

Ответ: Шаговых двигателей существует множество разновидностей. В настоящее время 95% всех шаговых двигателей — гибридные. В зависимости от конфигурации обмоток двигатели делятся: а)Биполярный — имеет четыре выхода, содержит в себе две обмотки. б)Униполярный — имеет шесть выходов. Содержит в себе две обмотки, но каждая обмотка имеет отвод из середины. в)Четырехобмоточный — имеет четыре независимые обмотки. Можно представлять его как униполярный, обмотки которого разъединены, а если соединить соседние отводы — получим биполярный двигатель.

В зависимости от типа электронного коммутатора управление шаговым двигателем может быть: однополярным или разнополярным; симметричным или несимметричным; ·потенциальным или импульсным. При однополярном управлении напряжение каждой фазе изменяется от 0 до +U, а при разнополярном – от -U до +U. Управление называется симметричным, если в каждом такте коммутации задействуется одинаковое число обмоток, и несимметричным – если разное.

Вопрос: Корпус у меня не разборный, а хочется посмотреть что внутри!

Ответ: Внутри находятся обмотки, зубчатый ротор и несколько подшипников. Не стоит разбирать рабочий двигатель. Ротор устанавливается с малым зазором, кроме того, система ротор-статор образует замкнутый магнитопровод, который намагничивается в собранном состоянии, и двигатель после разборки теряет существенную часть момента.

Вопрос: На какой минимальный угол может повернуться шаговый двигатель?

Ответ: Большинство моделей имеет 200 шагов на оборот, т.е. 1.8 градуса на шаг. Также производятся и можно заказать у нас двигатель с шагом в 0.9 градуса(400 шагов на оборот). Существует также возможность использования микрошагового режима, который позволяет делить шаг без потери точности на 8-10 микрошагов. Это означает, что для двигателя с шагом 0.9 градуса минимальным угла поворота будет примерно 0,09 град = 5.4 угловых минуты. Существуют также драйверы, которые могут делить шаг на 256 и даже 512 микрошагов. Но практическое значение таких делений невелико — во-первых, для совершения каждого микрошага требуется подать отдельный импульс STEP, соответственно, требуется очень высокая частота импульсов, во-вторых, точность перестает расти уже после деления шага на 10-16 частей. Единственным применением таких режимов остается повышение плавности хода двигателя.

Читать еще:  Шааз б9в для какого двигателя

Вопрос: Какие существуют программы для работы с шаговыми двигателями?

Ответ: Их существует множетсво как перемещение на определенный шаг, так для трехмерного использования. Могут управлять от одного до шести двигателей. Например MACH3, LinuxCNC, Turbocnc, NC Studio.

Вопрос: Как можно повысить точность вращения вала шагового двигателя?

Ответ: Есть режим дробления шага (микрошаг) реализуется при независимом управлении током обмоток шагового электродвигателя. Управляя соотношением токов в обмотках можно зафиксировать ротор в промежуточном положении между шагами. Таким образом можно повысить плавность вращения ротора и добиться высокой точности позиционирования. Однако, деление шага не всегда приводит к увеличению точности. Погрешность установки вала всегда равна указанному производителем значению (обычно 5% от полного шага), вне зависимости от микрошага. Кроме того, точность установки снижается, если ток в одной из обмоток близок к нулю. В результате точность увеличивает деление шага до примерно 8-10 микрошагов (деление 1/8 или 1/10). Большие значения приводят лишь к увеличению плавности хода.

Вопрос: Что означают характеристики шагового двигателя — ток, индуктивность, напряжение и т.п.?

Ответ: Все характеристики двигателя находятся в тесной взаимосвязи и определяют главную — кривую зависимости крутящего момента от скорости. Рассматривать влияение характеристик надо для двигателей одного размера. Момент удержания — пиковое значение крутящего момента двигателя — зависит от тока и индуктивности обмотки. Чем больше индуктивность, тем больший момент удержания можно развить, но тем больше требуется напряжение питания на высоких скоростях, чтобы преодолеть индуктивное сопротивление и закачать нужный ток в обмотку. Ток обмотки также определяет выбор драйвера шагового двигателя. Напряжение питания обмотки равно U = I*R, номинальному току обмотки умноженному на напряжение и показывает, какое постоянное напряжение надо подать на обмотку, чтобы получить номинальный ток и, соответственно, момент удержания. Величина напряжения используется при выборе драйвера и характеристик источника питания.

Вопрос: Какой шаговый двигатель лучше, А или Б?

Ответ: Этот вопрос неоднозначен, но все же дадим пару рекомендаций. Как правило, ориентироваться надо не на момент удержания, а на индуктивность. Лучше работают те двигатели, у которых индуктивность меньше — большинство задач требуют момента на высоких скоростях, и малая индуктивность требует меньшего напряжения питания. Нормальной индуктивностью можно считать 2-5 мГн для двигателей NEMA23 (фланец 57 мм), 4-6 мГн для двигателей NEMA34 (фланец 86 мм). Если А и Б — двигатели разного размера, смотрите кривую зависимости момента от скорости — чем она более пологая, тем лучше. См. более подробный алгоритм выбора шагового двигателя.

Вопрос: Что такое драйвер управления шаговым двигателем?

Ответ: Драйверы шаговых двигателей используются для управления биполярными и униполярными шаговыми двигателями с полным шагом, половинным и микрошагом. Они действуют как посредники между компьютером и двигателем и должны подбираться по напряжению и уровню мощности, типу сигнала (аналоговый и цифровой). Тип двигателя является самым важным фактором при выборе драйвера. В униполярном или биполярном двигателе ток проходит только в одном направлении по обмотке. Биполярные шаговые двигатели имеют две обмотки через которые ток проходит поочередно. Шаговые двигатели с полным шагом приводятся в движение благодаря изменениям магнитного поля относительно ротора. Полушаговые двигатели в свою очередь действуют также, как двигатели с полным шагом однако угловое перемещение ротора составляет половину шага полношагового двигателя. На каждый второй шаг запитана лишь одна фаза, а в остальных случаях запитаны две. В результате угловое перемещение ротора составляет половину угла. Микрошаговые или минишаговые двигатели отличаются дискретным числом угловых перемещений угловых положений между каждым полным шагом. В драйверах минишаговых и микрошаговых двигателей используются электронные методы улучшения позиционного решения системы управления. Драйверы шаговых двигателей отличаются по электрическим характеристикам, параметрам управления, размерам и техническим характеристикам. Электрические характеристики включают в себя максимальное напряжение на входе, номинальную мощность, силу тока на выходе, максимальная сила тока на выходе, питание переменным и постоянным током. Драйверы для шаговых двигателей могут быть однофазными или трех фазными с частотой в 50, 60, или 400 Гц. Параметры управления включают в себя особенности установки и управления. В некоторых драйверах используются ручные средства управления типа кнопок, DIP-переключателей или потенциометров. В других используются джойстики, цифровые пульты управления, компьютерные интерфейсы, или слоты для карт PCMCIA (Международная ассоциация производителей карт памяти для персональных компьютеров). Программы контроля могут быть сохранены на передвижных, энергонезависимых носителях данных. Переносные блоки управления разработаны для управления с удаленных точек. Также доступно беспроводное и WEB управления. Форма драйверов позволяет сборку модуля в нескольких конфигурациях. Большинство устройств могут монтироваться на шасси, контактные DIN рельсы, панели, стойки, стены или печатные платы (PCB). Также возможна установка автономных устройств и интегральных микросхем, которые монтируются на печатные платы. Особенности драйверов: подавление резонанса; вспомогательные входы/выходы (I/O); мягкий старт; автонастройка, самодиагностика и проверка состояния; а так же сигнализация в таких случаях как перенапряжение. В драйверах используют много различных типов шин и коммуникационных систем. Шинные типы: (ATA), (PCI), (IDE), (ISA), (GPIB), (USB) и (VMEbus). Коммуникационные стандарты: ARCNET, AS-i, Beckhoff I/O, CANbus, CANopen, DeviceNet, Ethernet, (SCSI) и (SDS). Также доступно большое количество последовательных и параллельных интерфейсов. Соответствующая статья поможет подобрать драйвер биполярного двигателя для станка с ЧПУ.

Вопрос: Как узнать, подходит ли двигатель А к драйверу Б

Ответ: Чтобы это узнать, сделайте следующее: 1) проверьте, может ли драйвер выдавать ток фазы, равный(или примерно равный)току, указанному производителем двигателя. Если ток драйвера заметно меньше тока фазы двигателя — драйвер не подходит. 2) Вычислите максимальное напряжение питания двигателя по формуле Umax = 32 * sqrt (L), где L — индуктивность обмоток двигателя в миллигенри(указывается производителем). Желательно, чтобы максимально допустимое напряжение питания драйвера было примерно равно этому значению, или было немного больше. Если это условие не выполняется, то скорее всего двигатель вращаться будет, но больших скоростей достичь не удастся. Пример:подходит ли драйвер PLD545-G3 для двигателя PL86H151? Ток обмотки двигателя — 4.2 А, ток, выдаваемый драйвером — до 5А, первое условия выполнено. Индуктивность двигателя — 12 мГн, по формуле получаем Umax = 32 * sqrt(12) = 110 Вольт. Максимальное напряжение питания драйвера — 45 Вольт. Это означает, что двигатель будет отдавать момент только на низких оборотах, а для получения качественного движения необходимо использовать или драйвер с напряжением питания до 80 Вольт(например, PLD86 или PLD880), или двигатель с меньшей индуктивностью.

Вопрос: У меня перегревается двигатель, что делать?

Ответ: Для начала надо определить, действительно ли двигатель перегревается. Многие воспринимают рабочую температуру двигателя как перегрев, потому что её «не терпит рука», тогда как нагрев в 80 градусов — нормальное явления для шагового двигателя. Поэтому необходимо замерить реальную температуру. Если она меньше 80 градусов — беспокоиться не стоит. Если больше — первое, что необходимо проверить, это выставленный рабочий ток на драйвере. Он должен соответствовать номинальному току двигателя. Также можно использовать функцию снижения тока обмоток в режиме удержания. К снижению нагрева приводит также снижение питающего напряжения, однако, и момент тоже снизится. Если нет возможности жертвовать динамикой двигателя, остается единственный способ — установить на корпус ШД радиатор и/или вентилятор.

Вопрос: Шаговый двигатель постоянно пропускает шаги. Что делать?

Ответ: Пропуск шагов — самая неприятная проблема у шаговых приводов. Причин может быть множество. В порядке убывания распространенности:

  • Некачественный блок управления двигателем. Не стоит недооценивать сложность управления шаговым двигателем. Разница в работе драйвера Leadshine и кустарной поделки — очень велика. Особенно это заметно при работе в области резонанса.
  • Неверные настройки драйвера. Неверно выбранное напряжение питания, ток — могут приводить к пропуску шагов. Проверьте все настройки еще раз.
  • Двигатель перегружен. Нагрузка на двигатель слишком велика. Снизьте скорость или поставьте двигатель побольше.
  • Механическая часть(направляющие, передачи) подклинивает
  • Бракованный двигатель. Прозвоните обмотки, проверьте их сопротивление(должно совпадать с паспортным). Проверьте вращение вала рукой — при разомкнутых обмотках вал отключенного двигателя должен вращаться легко и беззвучно, при замкнутых накоротко вал крутиться не должен.
  • Дребезг на контактах управляющих сигналов STEP/DIR
  • Проблемы с генерацией сигналов STEP/DIR. Это целое отдельное семейство проблем, которое достойно отдельного обсуждения.
  • Иногда за пропуск шагов принимают проскальзывание шестерни на валу или муфты, соединяющей вал двигателя с винтом передачи

РАСПРЕДЕЛИТЕЛЬ ЗАЖИГАНИЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Изобретение относится к области электротехники и транспорта, в частности к устройствам для прерывистого токосъема, и может быть использовано в системах зажигания двигателей внутреннего сгорания (ДВС), а также в системах коммутации, телеметрии и вооружений, например, для управления воспламенением пороховых зарядов. Предлагаемый распределитель зажигания двигателя внутреннего сгорания включает крышку с внутренней круглой поверхностью, на которой по окружности равномерно расположены n контактов с выводами на свечи зажигания, и ротор, расположенный внутри крышки по ее оси симметрии и снабженный токораздаточной пластиной. При этом, согласно изобретению, токораздаточная пластина ротора выполнена в виде правильной n+1 или n-1 — лучевой звезды, при этом напряжение на свечи всех цилиндров подается последовательно за время неполного оборота ротора распределителя, а только за время поворота ротора на угол 2π/(n+1) или 2π/(n-1), соответственно, в результате чего требуемая частота вращения ротора распределителя снижается в n+1 или n-1 раз. Технический результат — снижение износа, вибраций и тепловыделения элементов распределителя, обеспечение конструктивной самоуравновешенности его ротора, а также увеличение времени действия искрового разряда свеч зажигания, в результате чего достигается повышение функционально-эксплуатационных характеристик распределителя, выражающееся в увеличении его эффективности и надежности. 4 ил.

Читать еще:  Водяной реактивный двигатель своими руками

Распределитель зажигания двигателя внутреннего сгорания, включающий крышку с внутренней круглой поверхностью, на которой по окружности равномерно расположены n контактов с выводами на свечи зажигания, и ротор, расположенный внутри крышки по ее оси симметрии и снабженный токораздаточной пластиной, отличающийся тем, что токораздаточная пластина ротора выполнена в виде правильной n+1 или n-1 — лучевой звезды, при этом напряжение на свечи всех цилиндров подается последовательно за время неполного оборота ротора распределителя, а только за время поворота ротора на угол 2π/(n+1) или 2π/(n-1) соответственно, в результате чего требуемая частота вращения ротора распределителя снижается в n+1 или n-1 раз.

Изобретение относится к устройствам для прерывистого токосъема и может быть использовано в системах зажигания двигателей внутреннего сгорания (ДВС), а также в системах коммутации, телеметрии и вооружений, например, для управления воспламенением пороховых зарядов.

Широко известен распределитель зажигания, подающий высокое напряжение на свечи цилиндров, включающий крышку с внутренней круглой поверхностью, на которой по окружности равномерно расположены контакты с выводами на свечи зажигания и ротор, расположенный внутри крышки по ее оси симметрии и снабженный токораздаточной пластиной в виде луча, исходящего из центра ротора к его периферии. Высокое напряжение подается на токораздаточную пластину в центре ротора через центральный угольный контакт крышки распределителя от катушки зажигания. Другой конец токораздаточной пластины взаимодействует с боковыми контактами на крышке распределителя. За время одного оборота ротора распределителя высокое напряжение подается последовательно на свечи всех цилиндров в порядке их работы. Такие распределители зажигания установлены на большинстве автомобилей.

Например, известен распределитель 38.3706 /Автомобили ВА3-2107. Руководство по техническому обслуживанию и ремонту. К.Б.Пятков, А.П.Игнатов, С.Н.Косарев и др. М., Издательство «За рулем», 2001 г./, включающий ротор с однолучевой токораздаточной пластиной, контактирующей при вращении с боковыми контактами на крышке распределителя, принятый за прототип.

Недостатком такого распределителя является высокая частота вращения его ротора. Так, за два оборота коленчатого вала четырехтактного двигателя ротор распределителя должен совершить один оборот, т.е. частота вращения ротора равна половине частоты вращения коленвала двигателя. Частоты вращения валов автомобильных двигателей постоянно возрастают и в настоящее время достигают 5000-8000 об/мин / В.Е.Ютт. Электрооборудование автомобилей. М., 2006/. Соответственно частоты вращения ротора распределителя должны составлять 2500-4000 об/мин. Столь высокая частота вращения ротора такого точного и ответственного устройства, каким является распределитель, приводит к целому ряду причин, резко снижающих его функционально-эксплуатационные качества.

Перечислим только некоторые из них.

1. Повышенный износ подшипниковых узлов, высокий уровень вибраций и тепловыделения.

2. Проблемы разбалансировки ротора вследствие изначально конструктивно несамоурановешенной схемы однолучевой токораздаточной пластины.

3. Высокая частота вращения приводит к весьма малому промежутку времени замкнутого состояния токораздаточной пластины ротора с боковыми контактами крышки распределителя и, как следствие, небольшой продолжительности существования искрового разряда на контактах свечей, что не обеспечивает высокой надежности процесса воспламенения рабочей смеси. Существуют работы, специально посвященные увеличению контактирующей поверхности токораздаточной пластины с целью увеличения продолжительности искрового разряда на контактах свечей /Агошков О.Г., Белов А.В, Вандышев В.Н. и др. Распределитель зажигания двигателя внутреннего сгорания. Патент РФ №2166818, 1999/.

Подобные проблемы, как правило, приводят к постепенному отказу от применения роторных распределителей в пользу систем зажигания, не имеющих вращающихся частей /Р.Демидович. Система зажигания легковых автомобилей. Минск, 1998/.

Задачей заявляемого изобретения является многократное снижение частоты вращения ротора распределителя за счет того, что высокое напряжение подается последовательно на свечи всех цилиндров в порядке их работы за время неполного оборота ротора распределителя, а только за время малого его поворота. Это устраняет перечисленные выше проблемы.

Сопутствующим эффектом является многократное снижение износа контактов токораздаточной пластины.

Поставленная задача решается тем, что в распределителе зажигания n-цилиндрового двигателя внутреннего сгорания, включающем крышку с внутренней круглой поверхностью, на которой по окружности равномерно расположены n контактов с выводами на свечи зажигания, и ротор, расположенный внутри крышки по ее оси симметрии и снабженный токораздаточной пластиной, токораздаточная пластина выполнена в виде правильной n+1 или n-1 — лучевой звезды.

Изложенная сущность поясняется чертежами, где на фиг.1 изображена схема распределителя зажигания двигателя внутреннего сгорания, на фиг.2 — последовательность распределения напряжения по боковым контактам крышки для прямого и обратного искрообразования, на фиг.3 — схема работы распределителя зажигания для прямого и обратного искрообразования. Прямое искрообразование показано на правых частях фиг.2, 3, тогда как обратное — на левых. В качестве примера приведена схема прямого искрообразования для 4-цилиндрового двигателя, n=4, и обратного искрообразования для 6-цилиндрового двигателя, n=6. В обоих случаях используется один и тот же ротор с пятилучевой токораздаточной пластиной. На фиг.4 приведены частоты вращения традиционного однолучевого распределителя зажигания и пятилучевого как функции частот вращения коленвала ДВС.

Распределитель зажигания двигателя внутреннего сгорания (фиг.1) содержит крышку 1 с внутренней круглой поверхностью, на которой по окружности равномерно расположены n контактов 2 с выводами на свечи зажигания (не показаны), ротор 3, расположенный внутри крышки 1 по ее оси симметрии и снабженный токораздаточной пластиной 4. Токораздаточная пластина 4 выполнена в виде правильной n+1 или n-1 — лучевой звезды.

Высокое напряжение подается в центр токораздаточной пластины 4 через центральный угольный контакт крышки распределителя 1. При вращении ротора 3 лучи токораздаточной пластины 4 последовательно взаимодействуют с боковыми контактами 2 на крышке 1 распределителя: в направлении, совпадающем с направлением вращения ротора 3, в случае n+1 (прямое, или попутное, искрообразование) или в противоположном направлении (обратное, или встречное, искрообразование) в случае n-1.

На фиг.2 справа наглядно видна схема прямого искрообразования для 4-цилиндрового двигателя, на фиг.2 справа — схема обратного искрообразования для 6 — цилиндрового двигателя. В обоих случаях использован один и тот же ротор с пятилучевой токораздаточной пластиной.

Принцип работы и анализ прямого и обратного искрообразования на боковых контактах крышки распределителя

Для анализа прямого и обратного искрообразования на боковых контактах крышки распределителя служит фиг.3. На фиг.3 по-прежнему справа изображена схема прямого искрообразования для 4-цилиндрового двигателя, а слева — схема обратного искрообразования для 6-цилиндрового двигателя посредством ротора с пятилучевой токораздаточной пластиной в увеличенном масштабе с указанием опорных углов.

Пусть в начальный момент времени один из n+1 (справа) или n-1 (слева) лучей токораздаточной пластины 4 совпадает с одним из n боковых контактов 2 крышки распределителя 1 (фиг.3). Высокое напряжение из центра пластины по этому лучу передается на свечу зажигания соответствующего цилиндра. При повороте ротора 3 на угол (при прямом искрообразовании) или на угол (при обратном) напряжение передается на соседний боковой контакт 2 крышки — по направлению вращения ротора 3 или против вращения ротора 3 через соседний луч. При повороте ротора 3 на угол 2π/(n+1)=nδ или на угол 2π/(n-1)=nδ напряжение полностью последовательно распределится на все боковые контакты 2 крышки 1 в прямом или обратном направлении. Следовательно, требуемая частота вращения n+1 — лучевого или n-1 — лучевого ротора 3 будет соответственно в n+1 или в n-1 раз меньше частоты вращения однолучевого ротора, т.е. импульсы напряжений будут последовательно передаваться на соседние боковые контакты 2 через те же интервалы времени. Таким образом, многолучевой ротор выполняет функцию мультипликатора, т.е. умножителя частоты искрообразования в n+1 или в n-1 раз, и его частота вращения должна быть во столько же раз снижена.

Пример расчета частоты вращения ротора с многолучевой токораздаточной пластиной для прямого и обратного искрообразования на боковых контактах крышки распределителя

В качестве примера рассмотрим схему прямого искрообразования для 4-цилиндрового двигателя, n=4 и обратного искрообразования для 6-цилиндрового двигателя, n=6. Тогда в обоих рассматриваемых случаях должен быть использован один и тот же ротор с пятилучевой токораздаточной пластиной. Требуемая частота вращения такого ротора будет ровно в 5 раз ниже частоты вращения однолучевого ротора распределителя. На фиг.4 приведены частоты вращения пятилучевого f5 и однолучевого f1 роторов как функции частоты вращения f коленвала ДВС. Наглядно виден эффект мультипликации частоты искрообразования, проявляющийся в пятикратном снижении частот вращения ротора распределителя.

Выводы. Технический результат

1. Использование n+1 или n-1-лучевой токораздаточной пластины, где n — число боковых контактов на крышке распределителя, снижает частоту вращения ротора соответственно в n+1 или в n-1 раз. В первом случае последовательность искрообразования идет в прямом, а во втором — в обратном направлении относительно направления вращения ротора.

2. Многократное снижение частоты вращения ротора распределителя зажигания весьма существенно для устранения вибраций, тепловыделения и динамических нагрузок на подшипники распределителя.

3. Токораздаточная пластина в виде правильной многолучевой звезды самоуравновешена, в отличие от однолучевой, что конструктивно обеспечивает балансировку ротора.

4. Малая частота вращения ротора распределителя увеличивает время замкнутого состояния токораздаточной пластины ротора с боковыми контактами крышки распределителя и, следовательно, увеличивает продолжительность существования искрового разряда на контактах свечей, что обеспечивает высокую надежность процесса воспламенения рабочей смеси.

Читать еще:  Двигатель 4jg2t технические характеристики

5. При одном полном цикле искрообразования (однократном последовательном распределении напряжения по всем цилиндрам) n+1 или n-1 — лучевого ротора каждый луч токораздаточной пластины работает лишь один раз. Следовательно, и износ контактов многолучевой пластины будет в n+1 или в n-1 раз меньше, чем однолучевого.

1. Автомобили ВА3-2107. Руководство по техническому обслуживанию и ремонту. К.Б.Пятков, А.П.Игнатов, С.Н.Косарев и др. М., Издательство «За рулем», 2001 г. (прототип).

2. В.Е.Ютт. Электрооборудование автомобилей. М., 2006.

3. Агошков О.Г., Белов А.В., Вандышев В.Н. и др. Распределитель зажигания двигателя внутреннего сгорания. Патент РФ №2166818, 1999.

4. Р.Демидович. Система зажигания легковых автомобилей. Минск, 1998.

Частота вращения: формула

Количество повторений каких-либо событий или их возникновения за одну единицу таймера называется частотой. Это физическая величина измеряется в герцах – Гц (Hz). Она обозначается буквами ν, f, F, и есть отношение количества повторяющихся событий к промежутку времени, в течение которого они произошли.

При обращении предмета вокруг своего центра можно говорить о такой физической величине, как частота вращения, формула:

где:

  • N – количество оборотов вокруг оси или по окружности,
  • t – время, за которое они были совершены.

В системе СИ обозначается как – с-1 (s-1) и именуется как обороты в секунду (об/с). Применяют и другие единицы вращения. При описании вращения планет вокруг Солнца говорят об оборотах в часах. Юпитер делает одно вращение в 9,92 часа, тогда как Земля и Луна оборачиваются за 24 часа.

Номинальная скорость вращения

Прежде, чем дать определение этому понятию, необходимо определиться, что такое номинальный режим работы какого-либо устройства. Это такой порядок работы устройства, при котором достигаются наибольшая эффективность и надёжность процесса на продолжении длительного времени. Исходя из этого, номинальная скорость вращения – количество оборотов в минуту при работе в номинальном режиме. Время, необходимое для одного оборота, составляет 1/v секунд. Оно называется периодом вращения T. Значит, связь между периодом обращения и частотой имеет вид:

К сведению. Частота вращения вала асинхронного двигателя – 3000 об./мин., это номинальная скорость вращения выходного хвостовика вала при номинальном режиме работы электродвигателя.

Как найти или узнать частоты вращений различных механизмов? Для этого применяется прибор, который называется тахометр.

Угловая скорость

Когда тело движется по окружности, то не все его точки движутся с одинаковой скоростью относительно оси вращения. Если взять лопасти обычного бытового вентилятора, которые вращаются вокруг вала, то точка расположенная ближе к валу имеет скорость вращения больше, чем отмеченная точка на краю лопасти. Это значит, у них разная линейная скорость вращения. В то же время угловая скорость у всех точек одинаковая.

Угловая скорость представляет собой изменение угла в единицу времени, а не расстояния. Обозначается буквой греческого алфавита – ω и имеет единицу измерения радиан в секунду (рад/с). Иными словами, угловая скорость – это вектор, привязанный к оси обращения предмета.

Формула для вычисления отношения между углом поворота и временным интервалом выглядит так:

где:

  • ω – угловая скорость (рад./с);
  • ∆ϕ – изменение угла отклонения при повороте (рад.);
  • ∆t – время, затраченное на отклонение (с).

Обозначение угловой скорости употребляется при изучении законов вращения. Оно употребляется при описании движения всех вращающихся тел.

Угловая скорость в конкретных случаях

На практике редко работают с величинами угловой скорости. Она нужна при конструкторских разработках вращающихся механизмов: редукторов, коробок передач и прочего.

Вычислить её, применяя формулу, можно. Для этого используют связь угловой скорости и частоты вращения.

где:

  • π – число, равное 3,14;
  • ν – частота вращения, (об./мин.).

В качестве примера могут быть рассмотрены угловая скорость и частота вращения колёсного диска при движении мотоблока. Часто необходимо уменьшить или увеличить скорость механизма. Для этого применяют устройство в виде редуктора, при помощи которого понижают скорость вращения колёс. При максимальной скорости движения 10 км/ч колесо делает около 60 об./мин. После перевода минут в секунды это значение равно 1 об./с. После подстановки данных в формулу получится результат:

ω = 2*π*ν = 2*3,14*1 = 6,28 рад./с.

К сведению. Снижение угловой скорости часто требуется для того, чтобы увеличить крутящий момент или тяговое усилие механизмов.

Как определить угловую скорость

Принцип определения угловой скорости зависит от того, как происходит движение по окружности. Если равномерно, то употребляется формула:

Если нет, то придётся высчитывать значения мгновенной или средней угловой скорости.

Величина, о которой идёт разговор, векторная, и при определении её направления используют правило Максвелла. В просторечии – правило буравчика. Вектор скорости имеет одинаковое направление с поступательным перемещением винта, имеющего правую резьбу.

Рассмотрим на примере, как определить угловую скорость, зная, что угол поворота диска радиусом 0,5 м меняется по закону ϕ = 6*t:

ω = ϕ / t = 6 * t / t = 6 с-1

Вектор ω меняется из-за поворота в пространстве оси вращения и при изменении значения модуля угловой скорости.

Угол поворота и период обращения

Рассмотрим точку А на предмете, вращающимся вокруг своей оси. При обращении за какой-то период времени она изменит своё положение на линии окружности на определённый угол. Это угол поворота. Он измеряется в радианах, потому что за единицу берётся отрезок окружности, равный радиусу. Ещё одна величина измерения угла поворота – градус.

Когда в результате поворота точка А вернётся на своё прежнее место, значит, она совершила полный оборот. Если её движение повторится n-раз, то говорят о некотором количестве оборотов. Исходя из этого, можно рассматривать 1/2, 1/4 оборота и так далее. Яркий практический пример этому – путь, который проделывает фреза при фрезеровании детали, закреплённой в центре шпинделя станка.

Внимание! Угол поворота имеет направление. Оно отрицательное, когда вращение происходит по часовой стрелке и положительное при вращении против движения стрелки.

Если тело равномерно продвигается по окружности, можно говорить о постоянной угловой скорости при перемещении, ω = const.

В этом случае находят применения такие характеристики, как:

  • период обращения – T, это время, необходимое для полного оборота точки при круговом движении;
  • частота обращения – ν, это полное количество оборотов, которое совершает точка по круговой траектории за единичный временной интервал.

Интересно. По известным данным, Юпитер обращается вокруг Солнца за 12 лет. Когда Земля за это время делает вокруг Солнца почти 12 оборотов. Точное значение периода обращения круглого гиганта – 11,86 земных лет.

Циклическая частота вращения (обращения)

Скалярная величина, измеряющая частоту вращательного движения, называется циклической частотой вращения. Это угловая частота, равная не самому вектору угловой скорости, а его модулю. Ещё её именуют радиальной или круговой частотой.

Циклическая частота вращения – это количество оборотов тела за 2*π секунды.

У электрических двигателей переменного тока это частота асинхронная. У них частота вращения ротора отстаёт от частоты вращения магнитного поля статора. Величина, определяющая это отставание, носит название скольжения – S. В процессе скольжения вал вращается, потому что в роторе возникает электроток. Скольжение допустимо до определённой величины, превышение которой приводит к перегреву асинхронной машины, и её обмотки могут сгореть.

Устройство этого типа двигателей отличается от устройства машин постоянного тока, где токопроводящая рамка вращается в поле постоянных магнитов. Большое количество рамок вместил в себя якорь, множество электромагнитов составили основу статора. В трёхфазных машинах переменного тока всё наоборот.

При работе асинхронного двигателя статор имеет вращающееся магнитное поле. Оно всегда зависит от параметров:

  • частоты питающей сети;
  • количества пар полюсов.

Скорость вращения ротора состоит в прямом соотношении со скоростью магнитного поля статора. Поле создаётся тремя обмотками, которые расположены под углом 120 градусов относительно друг друга.

Переход от угловой к линейной скорости

Существует различие между линейной скоростью точки и угловой скоростью. При сравнении величин в выражениях, описывающих правила вращения, можно увидеть общее между этими двумя понятиями. Любая точка В, принадлежащая окружности с радиусом R, совершает путь, равный 2*π*R. При этом она делает один оборот. Учитывая, что время, необходимое для этого, есть период Т, модульное значение линейной скорости точки В находится следующим действием:

ν = 2*π*R / Т = 2*π*R* ν.

Так как ω = 2*π*ν, то получается:

Следовательно, линейная скорость точки В тем больше, чем дальше от центра вращения находится точка.

К сведению. Если рассматривать в качестве такой точки города на широте Санкт-Петербурга, их линейная скорость относительно земной оси равна 233 м/с. Для объектов на экваторе – 465 м/с.

Числовое значение вектора ускорения точки В, движущейся равномерно, выражается через R и угловую скорость, таким образом:

а = ν2/ R, подставляя сюда ν = ω* R, получим: а = ν2/ R = ω2* R.

Это значит, чем больше радиус окружности, по которой движется точка В, тем больше значение её ускорения по модулю. Чем дальше расположена точка твердого тела от оси вращения, тем большее ускорение она имеет.

Поэтому можно вычислять ускорения, модули скоростей необходимых точек тел и их положений в любой момент времени.

Понимание и умение пользоваться расчётами и не путаться в определениях помогут на практике вычислениям линейной и угловой скоростей, а также свободно переходить при расчётах от одной величины к другой.

Видео

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector